Completeness of $L^p$-spaces over finitely additive set functions
Colloquium Mathematicum, Tome 22 (1970) no. 2, pp. 257-261.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-22-2-257-261

Euline Green 1

1
@article{10_4064_cm_22_2_257_261,
     author = {Euline Green},
     title = {Completeness of $L^p$-spaces over finitely additive set functions},
     journal = {Colloquium Mathematicum},
     pages = {257--261},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1970},
     doi = {10.4064/cm-22-2-257-261},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-22-2-257-261/}
}
TY  - JOUR
AU  - Euline Green
TI  - Completeness of $L^p$-spaces over finitely additive set functions
JO  - Colloquium Mathematicum
PY  - 1970
SP  - 257
EP  - 261
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-22-2-257-261/
DO  - 10.4064/cm-22-2-257-261
LA  - en
ID  - 10_4064_cm_22_2_257_261
ER  - 
%0 Journal Article
%A Euline Green
%T Completeness of $L^p$-spaces over finitely additive set functions
%J Colloquium Mathematicum
%D 1970
%P 257-261
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-22-2-257-261/
%R 10.4064/cm-22-2-257-261
%G en
%F 10_4064_cm_22_2_257_261
Euline Green. Completeness of $L^p$-spaces over finitely additive set functions. Colloquium Mathematicum, Tome 22 (1970) no. 2, pp. 257-261. doi : 10.4064/cm-22-2-257-261. http://geodesic.mathdoc.fr/articles/10.4064/cm-22-2-257-261/

Cité par Sources :