Kernels, truth and satisfaction
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 31-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Kotlarski–Krajewski–Lachlan Theorem says that every resplendent model of Peano Arithmetic has a full satisfaction class. Enayat and Visser gave a more model-theoretic proof of this theorem. We redo their proof using kernels of directed graphs.
DOI : 10.4064/ba8176-1-2019
Keywords: kotlarski krajewski lachlan theorem says every resplendent model peano arithmetic has full satisfaction class enayat visser gave model theoretic proof theorem redo their proof using kernels directed graphs

James H. Schmerl 1

1 Department of Mathematics University of Connecticut Storrs, CT 06269, U.S.A.
@article{10_4064_ba8176_1_2019,
     author = {James H. Schmerl},
     title = {Kernels, truth and satisfaction},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {31--35},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2019},
     doi = {10.4064/ba8176-1-2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8176-1-2019/}
}
TY  - JOUR
AU  - James H. Schmerl
TI  - Kernels, truth and satisfaction
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2019
SP  - 31
EP  - 35
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8176-1-2019/
DO  - 10.4064/ba8176-1-2019
LA  - en
ID  - 10_4064_ba8176_1_2019
ER  - 
%0 Journal Article
%A James H. Schmerl
%T Kernels, truth and satisfaction
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2019
%P 31-35
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8176-1-2019/
%R 10.4064/ba8176-1-2019
%G en
%F 10_4064_ba8176_1_2019
James H. Schmerl. Kernels, truth and satisfaction. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 31-35. doi : 10.4064/ba8176-1-2019. http://geodesic.mathdoc.fr/articles/10.4064/ba8176-1-2019/

Cité par Sources :