When a constant subsequence implies ultimate periodicity
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 41-51.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show a curious property of sequences given by the recurrence $a_0 = h_1(0)$, $a_n = f(n)a_{n-1} + h_1(n)h_2(n)^n$, $n \gt 0$, where $f,h_1,h_2 \in \mathbb {Z}[X]$. Namely, if the sequence $(a_{kn+l})_{n\in \mathbb {N}}$ is constant for some $k\in \mathbb {N}_+$ and $l\in \mathbb {N}$, then either $(a_{2n+1})_{n\in \mathbb {N}}=(0)_{n\in \mathbb {N}}$ and $(a_{2n})_{n\in \mathbb {N}}$ is a geometric progression, or $(a_{n})_{n\in \mathbb {N}}$ is ultimately periodic with period dividing $2$.
DOI : 10.4064/ba8174-4-2019
Keywords: curious property sequences given recurrence n where mathbb namely sequence mathbb constant mathbb mathbb either mathbb mathbb mathbb geometric progression mathbb ultimately periodic period dividing nbsp

Piotr Miska 1

1 Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University in Kraków Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ba8174_4_2019,
     author = {Piotr Miska},
     title = {When a constant subsequence implies ultimate periodicity},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2019},
     doi = {10.4064/ba8174-4-2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8174-4-2019/}
}
TY  - JOUR
AU  - Piotr Miska
TI  - When a constant subsequence implies ultimate periodicity
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2019
SP  - 41
EP  - 51
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8174-4-2019/
DO  - 10.4064/ba8174-4-2019
LA  - en
ID  - 10_4064_ba8174_4_2019
ER  - 
%0 Journal Article
%A Piotr Miska
%T When a constant subsequence implies ultimate periodicity
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2019
%P 41-51
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8174-4-2019/
%R 10.4064/ba8174-4-2019
%G en
%F 10_4064_ba8174_4_2019
Piotr Miska. When a constant subsequence implies ultimate periodicity. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 41-51. doi : 10.4064/ba8174-4-2019. http://geodesic.mathdoc.fr/articles/10.4064/ba8174-4-2019/

Cité par Sources :