On a contraction property of Bernoulli canonical processes
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 2, pp. 187-209
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give several results concerning suprema of canonical processes. The main theorem concerns a contraction property of Bernoulli canonical processes which generalizes the one proved by Talagrand (1993). It states that for independent Rademacher random variables $(\varepsilon_i)_{i\geq1}$ we can compare $\mathbf{E}\,\sup_{t\in T}\sum_{i\geq1}\varphi_{i}(t)\varepsilon_i$ with $\mathbf{E}\,\sup_{t\in T}\sum_{i=1}^{\infty}t_i\varepsilon_i$, where the function $\varphi=(\varphi_i)_{i\geq1}: T\rightarrow\ell^2$, $T\subset\ell^2$, satisfies certain conditions. Originally, it was assumed that each $\varphi_i$ is a contraction. We relax this assumption to comparability of Gaussian parts of increments: for all $s,t\in T$ and $p\ge 0$,
$$
\inf_{|I^c|\le Cp}\sum_{i\in I}|\varphi_i(t)-\varphi_i(s)|^2\le C^2\inf_{|I^c|\le p}\sum_{i\in I}|t_i-s_i|^2,
$$
where $C\ge 1$ is an absolute constant and $I\subset{\mathbb N}$, $I^c={\mathbb N}\setminus I$.
Keywords:
several results concerning suprema canonical processes main theorem concerns contraction property bernoulli canonical processes which generalizes proved talagrand states independent rademacher random variables varepsilon geq compare mathbf sup sum geq varphi varepsilon mathbf sup sum infty varepsilon where function varphi varphi geq rightarrow ell subset ell satisfies certain conditions originally assumed each varphi contraction relax assumption comparability gaussian parts increments inf sum varphi varphi inf sum i s where absolute constant subset mathbb mathbb setminus
Affiliations des auteurs :
Witold Bednorz 1 ; Rafał Martynek 1
@article{10_4064_ba8111_4_2019,
author = {Witold Bednorz and Rafa{\l} Martynek},
title = {On a contraction property of {Bernoulli} canonical processes},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {187--209},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2019},
doi = {10.4064/ba8111-4-2019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8111-4-2019/}
}
TY - JOUR AU - Witold Bednorz AU - Rafał Martynek TI - On a contraction property of Bernoulli canonical processes JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2019 SP - 187 EP - 209 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8111-4-2019/ DO - 10.4064/ba8111-4-2019 LA - en ID - 10_4064_ba8111_4_2019 ER -
%0 Journal Article %A Witold Bednorz %A Rafał Martynek %T On a contraction property of Bernoulli canonical processes %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2019 %P 187-209 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba8111-4-2019/ %R 10.4064/ba8111-4-2019 %G en %F 10_4064_ba8111_4_2019
Witold Bednorz; Rafał Martynek. On a contraction property of Bernoulli canonical processes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 2, pp. 187-209. doi: 10.4064/ba8111-4-2019
Cité par Sources :