An improvement of a lemma from Gauss’s first proof of quadratic reciprocity
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 1, pp. 29-33
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An upper estimate is given for the least prime $q$ such that $(d/q)=1$ and $(p/q)=-1$, where $d\not =0$ is a given integer and $p$ is a given prime satisfying $p\equiv 1\ ({\rm mod}\ 8)$ and $(d/p)=1$.
Keywords:
upper estimate given least prime where given integer given prime satisfying equiv mod
Affiliations des auteurs :
A. Schinzel 1 ; M. Skałba 2
@article{10_4064_ba8109_4_2017,
author = {A. Schinzel and M. Ska{\l}ba},
title = {An improvement of a lemma from {Gauss{\textquoteright}s} first proof of quadratic reciprocity},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {29--33},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2017},
doi = {10.4064/ba8109-4-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8109-4-2017/}
}
TY - JOUR AU - A. Schinzel AU - M. Skałba TI - An improvement of a lemma from Gauss’s first proof of quadratic reciprocity JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2017 SP - 29 EP - 33 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8109-4-2017/ DO - 10.4064/ba8109-4-2017 LA - en ID - 10_4064_ba8109_4_2017 ER -
%0 Journal Article %A A. Schinzel %A M. Skałba %T An improvement of a lemma from Gauss’s first proof of quadratic reciprocity %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2017 %P 29-33 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba8109-4-2017/ %R 10.4064/ba8109-4-2017 %G en %F 10_4064_ba8109_4_2017
A. Schinzel; M. Skałba. An improvement of a lemma from Gauss’s first proof of quadratic reciprocity. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 1, pp. 29-33. doi: 10.4064/ba8109-4-2017
Cité par Sources :