Weighted weak-type inequality for martingales
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 2, pp. 165-175.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X=(X_t)_{t\geq 0}$ be a bounded martingale and let $Y=(Y_t)_{t\geq 0}$ be differentially subordinate to $X$. We prove that if $1\leq p \lt \infty $ and $W=(W_t)_{t\geq 0}$ is an $A_p$ weight of characteristic $[W]_{A_p}$, then $$ \| Y\| _{L^{p,\infty }(W)}\leq C_p[W]_{A_p}\| X\| _{L^\infty (W)}.$$ The linear dependence on $[W]_{A_p}$ is shown to be the best possible. The proof exploits a weighted exponential bound which is of independent interest. As an application, a related estimate for the Haar system is established.
DOI : 10.4064/ba8096-11-2017
Keywords: geq bounded martingale geq differentially subordinate prove leq infty geq weight characteristic infty leq infty linear dependence shown best possible proof exploits weighted exponential bound which independent interest application related estimate haar system established

Adam Osękowski 1

1 Department of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_ba8096_11_2017,
     author = {Adam Os\k{e}kowski},
     title = {Weighted weak-type inequality for martingales},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2017},
     doi = {10.4064/ba8096-11-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8096-11-2017/}
}
TY  - JOUR
AU  - Adam Osękowski
TI  - Weighted weak-type inequality for martingales
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2017
SP  - 165
EP  - 175
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8096-11-2017/
DO  - 10.4064/ba8096-11-2017
LA  - en
ID  - 10_4064_ba8096_11_2017
ER  - 
%0 Journal Article
%A Adam Osękowski
%T Weighted weak-type inequality for martingales
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2017
%P 165-175
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8096-11-2017/
%R 10.4064/ba8096-11-2017
%G en
%F 10_4064_ba8096_11_2017
Adam Osękowski. Weighted weak-type inequality for martingales. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 2, pp. 165-175. doi : 10.4064/ba8096-11-2017. http://geodesic.mathdoc.fr/articles/10.4064/ba8096-11-2017/

Cité par Sources :