Weighted weak-type inequality for martingales
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 2, pp. 165-175
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X=(X_t)_{t\geq 0}$ be a bounded martingale and let $Y=(Y_t)_{t\geq 0}$ be differentially subordinate to $X$. We prove that if $1\leq p \lt \infty $ and $W=(W_t)_{t\geq 0}$ is an $A_p$ weight of characteristic $[W]_{A_p}$, then $$ \| Y\| _{L^{p,\infty }(W)}\leq C_p[W]_{A_p}\| X\| _{L^\infty (W)}.$$ The linear dependence on $[W]_{A_p}$ is shown to be the best possible. The proof exploits a weighted exponential bound which is of independent interest. As an application, a related estimate for the Haar system is established.
Keywords:
geq bounded martingale geq differentially subordinate prove leq infty geq weight characteristic infty leq infty linear dependence shown best possible proof exploits weighted exponential bound which independent interest application related estimate haar system established
Affiliations des auteurs :
Adam Osękowski  1
@article{10_4064_ba8096_11_2017,
author = {Adam Os\k{e}kowski},
title = {Weighted weak-type inequality for martingales},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {165--175},
year = {2017},
volume = {65},
number = {2},
doi = {10.4064/ba8096-11-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8096-11-2017/}
}
TY - JOUR AU - Adam Osękowski TI - Weighted weak-type inequality for martingales JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2017 SP - 165 EP - 175 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8096-11-2017/ DO - 10.4064/ba8096-11-2017 LA - en ID - 10_4064_ba8096_11_2017 ER -
Adam Osękowski. Weighted weak-type inequality for martingales. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 2, pp. 165-175. doi: 10.4064/ba8096-11-2017
Cité par Sources :