Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 165-174
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Explicit formulas for the quadratic mean value at $s=1$ of the Dirichlet $L$-functions associated with the set $X_f^-$ of the $\phi (f)/2$ odd Dirichlet characters mod $f$ are known. They have been used to obtain explicit upper bounds for relative class numbers of cyclotomic number fields. Here we present a generalization of these results: we show that explicit formulas for quadratic mean values at $s=1$ of Dirichlet $L$-functions associated with subsets of $X_f^-$ can be obtained. As an application we use them to obtain explicit upper bounds for relative class numbers of imaginary subfields of cyclotomic number fields.
Keywords:
explicit formulas quadratic mean value dirichlet l functions associated set phi odd dirichlet characters mod known have obtain explicit upper bounds relative class numbers cyclotomic number fields here present generalization these results explicit formulas quadratic mean values dirichlet l functions associated subsets obtained application obtain explicit upper bounds relative class numbers imaginary subfields cyclotomic number fields
Affiliations des auteurs :
Stéphane R. Louboutin 1
@article{10_4064_ba8092_12_2016,
author = {St\'ephane R. Louboutin},
title = {Dedekind {Sums,} {Mean} {Square} {Value} of $L${-Functions} at $s=1$ and {Upper} {Bounds} on {Relative} {Class} {Numbers}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {165--174},
publisher = {mathdoc},
volume = {64},
number = {2-3},
year = {2016},
doi = {10.4064/ba8092-12-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8092-12-2016/}
}
TY - JOUR AU - Stéphane R. Louboutin TI - Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2016 SP - 165 EP - 174 VL - 64 IS - 2-3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8092-12-2016/ DO - 10.4064/ba8092-12-2016 LA - en ID - 10_4064_ba8092_12_2016 ER -
%0 Journal Article %A Stéphane R. Louboutin %T Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2016 %P 165-174 %V 64 %N 2-3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba8092-12-2016/ %R 10.4064/ba8092-12-2016 %G en %F 10_4064_ba8092_12_2016
Stéphane R. Louboutin. Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 165-174. doi: 10.4064/ba8092-12-2016
Cité par Sources :