Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 165-174.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Explicit formulas for the quadratic mean value at $s=1$ of the Dirichlet $L$-functions associated with the set $X_f^-$ of the $\phi (f)/2$ odd Dirichlet characters mod $f$ are known. They have been used to obtain explicit upper bounds for relative class numbers of cyclotomic number fields. Here we present a generalization of these results: we show that explicit formulas for quadratic mean values at $s=1$ of Dirichlet $L$-functions associated with subsets of $X_f^-$ can be obtained. As an application we use them to obtain explicit upper bounds for relative class numbers of imaginary subfields of cyclotomic number fields.
DOI : 10.4064/ba8092-12-2016
Keywords: explicit formulas quadratic mean value dirichlet l functions associated set phi odd dirichlet characters mod known have obtain explicit upper bounds relative class numbers cyclotomic number fields here present generalization these results explicit formulas quadratic mean values dirichlet l functions associated subsets obtained application obtain explicit upper bounds relative class numbers imaginary subfields cyclotomic number fields

Stéphane R. Louboutin 1

1 Aix Marseille Université CNRS, Centrale Marseille, I2M Marseille, France
@article{10_4064_ba8092_12_2016,
     author = {St\'ephane R. Louboutin},
     title = {Dedekind {Sums,} {Mean} {Square} {Value} of $L${-Functions} at $s=1$ and {Upper} {Bounds} on {Relative} {Class} {Numbers}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {165--174},
     publisher = {mathdoc},
     volume = {64},
     number = {2-3},
     year = {2016},
     doi = {10.4064/ba8092-12-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8092-12-2016/}
}
TY  - JOUR
AU  - Stéphane R. Louboutin
TI  - Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2016
SP  - 165
EP  - 174
VL  - 64
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8092-12-2016/
DO  - 10.4064/ba8092-12-2016
LA  - en
ID  - 10_4064_ba8092_12_2016
ER  - 
%0 Journal Article
%A Stéphane R. Louboutin
%T Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2016
%P 165-174
%V 64
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8092-12-2016/
%R 10.4064/ba8092-12-2016
%G en
%F 10_4064_ba8092_12_2016
Stéphane R. Louboutin. Dedekind Sums, Mean Square Value of $L$-Functions at $s=1$ and Upper Bounds on Relative Class Numbers. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 165-174. doi : 10.4064/ba8092-12-2016. http://geodesic.mathdoc.fr/articles/10.4064/ba8092-12-2016/

Cité par Sources :