On the Existence of a Non-trivial Non-negative Global Radial Weak Solution to a Fractional Laplacian Problem with a Singular Potential
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 175-183.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of a non-trivial non-negative radial weak solution to the problem \begin{equation*} \begin{cases} (-\Delta) ^{\alpha} u+bu=\lambda \dfrac{u}{|x|^{2\alpha}} +|u|^{p-1}u+\mu |u|^{r-1}u \mathrm{in} \ \mathbb{R}^N,\\ \lim\limits_{|x| \to \infty} u(x) = 0. \end{cases} \end{equation*} Here $N \gt 2\alpha $, $ \alpha \in ({1}/{2},1)$, $1 \lt r \lt p \lt \frac{N+2\alpha}{N-2\alpha}$ and $\mu \in \mathbb{R}$. We also assume that $b \gt 0$ and $ 0 \lt \lambda \lt 4^\alpha \frac{\Gamma^2(\frac{N+2\alpha}4)}{\Gamma^2(\frac{N-2\alpha}4)}$.
DOI : 10.4064/ba8070-9-2016
Keywords: prove existence non trivial non negative radial weak solution problem begin equation* begin cases delta alpha lambda dfrac alpha p r mathrm mathbb lim limits infty end cases end equation* here alpha alpha frac alpha n alpha mathbb assume lambda alpha frac gamma frac alpha gamma frac n alpha

Masoud Bayrami 1 ; Mahmoud Hesaaraki 1

1 Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran
@article{10_4064_ba8070_9_2016,
     author = {Masoud Bayrami and Mahmoud Hesaaraki},
     title = {On the {Existence} of a {Non-trivial} {Non-negative} {Global} {Radial} {Weak} {Solution} to a {Fractional} {Laplacian} {Problem} with a {Singular} {Potential}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {175--183},
     publisher = {mathdoc},
     volume = {64},
     number = {2-3},
     year = {2016},
     doi = {10.4064/ba8070-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8070-9-2016/}
}
TY  - JOUR
AU  - Masoud Bayrami
AU  - Mahmoud Hesaaraki
TI  - On the Existence of a Non-trivial Non-negative Global Radial Weak Solution to a Fractional Laplacian Problem with a Singular Potential
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2016
SP  - 175
EP  - 183
VL  - 64
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8070-9-2016/
DO  - 10.4064/ba8070-9-2016
LA  - en
ID  - 10_4064_ba8070_9_2016
ER  - 
%0 Journal Article
%A Masoud Bayrami
%A Mahmoud Hesaaraki
%T On the Existence of a Non-trivial Non-negative Global Radial Weak Solution to a Fractional Laplacian Problem with a Singular Potential
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2016
%P 175-183
%V 64
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8070-9-2016/
%R 10.4064/ba8070-9-2016
%G en
%F 10_4064_ba8070_9_2016
Masoud Bayrami; Mahmoud Hesaaraki. On the Existence of a Non-trivial Non-negative Global Radial Weak Solution to a Fractional Laplacian Problem with a Singular Potential. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 175-183. doi : 10.4064/ba8070-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/ba8070-9-2016/

Cité par Sources :