On-line Packing Cubes into $n$ Unit Cubes
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 185-198
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
If $n\geq 3$ and $d\in \{3,4\}$ or if $n\geq 1$ and $d\geq 5$, then any sequence of $d$-dimensional cubes of edge lengths not greater than $1$ whose total volume does not exceed $(n+1)\cdot 2^{-d}$ can be on-line packed into $n$ unit $d$-dimensional cubes.
Keywords:
geq geq geq sequence d dimensional cubes edge lengths greater whose total volume does exceed cdot d on line packed unit d dimensional cubes
Affiliations des auteurs :
Łukasz Zielonka  1
@article{10_4064_ba8063_10_2016,
author = {{\L}ukasz Zielonka},
title = {On-line {Packing} {Cubes} into $n$ {Unit} {Cubes}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {185--198},
year = {2016},
volume = {64},
number = {2-3},
doi = {10.4064/ba8063-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8063-10-2016/}
}
TY - JOUR AU - Łukasz Zielonka TI - On-line Packing Cubes into $n$ Unit Cubes JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2016 SP - 185 EP - 198 VL - 64 IS - 2-3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8063-10-2016/ DO - 10.4064/ba8063-10-2016 LA - en ID - 10_4064_ba8063_10_2016 ER -
Łukasz Zielonka. On-line Packing Cubes into $n$ Unit Cubes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 2-3, pp. 185-198. doi: 10.4064/ba8063-10-2016
Cité par Sources :