$\mathrm {SL}(2, 5)$ Has No Smooth Effective One-fixed-point Action on $S^8$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 1, pp. 85-94
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that there is no effective smooth one-fixed-point action of $\mathrm {SL}(2,5)$, the special linear group of $2\times 2$ matrices over $\mathbb {Z}_5$, on the $8$-dimensional sphere. The method of proof involves the intersection form.
Keywords:
prove there effective smooth one fixed point action mathrm special linear group times matrices mathbb dimensional sphere method proof involves intersection form
Affiliations des auteurs :
Agnieszka Borowiecka 1
@article{10_4064_ba8040_3_2016,
author = {Agnieszka Borowiecka},
title = {$\mathrm {SL}(2, 5)$ {Has} {No} {Smooth} {Effective} {One-fixed-point} {Action} on $S^8$},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {85--94},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2016},
doi = {10.4064/ba8040-3-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8040-3-2016/}
}
TY - JOUR
AU - Agnieszka Borowiecka
TI - $\mathrm {SL}(2, 5)$ Has No Smooth Effective One-fixed-point Action on $S^8$
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2016
SP - 85
EP - 94
VL - 64
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8040-3-2016/
DO - 10.4064/ba8040-3-2016
LA - en
ID - 10_4064_ba8040_3_2016
ER -
%0 Journal Article
%A Agnieszka Borowiecka
%T $\mathrm {SL}(2, 5)$ Has No Smooth Effective One-fixed-point Action on $S^8$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2016
%P 85-94
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8040-3-2016/
%R 10.4064/ba8040-3-2016
%G en
%F 10_4064_ba8040_3_2016
Agnieszka Borowiecka. $\mathrm {SL}(2, 5)$ Has No Smooth Effective One-fixed-point Action on $S^8$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 64 (2016) no. 1, pp. 85-94. doi: 10.4064/ba8040-3-2016
Cité par Sources :