Sharp Logarithmic Inequalities for Two Hardy-type Operators
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 3, pp. 237-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any locally integrable $f$ on $\mathbb {R}^n$, we consider the operators $S$ and $T$ which average $f$ over balls of radius $|x|$ and center $0$ and $x$, respectively: $$ Sf(x)=\frac {1}{|B(0,|x|)|}\int _{B(0,|x|)} f(t)\,dt,\hskip 1em Tf(x)=\frac {1}{|B(x,|x|)|}\int _{B(x,|x|)} f(t)\,dt $$ for $x\in \mathbb {R}^n$. The purpose of the paper is to establish sharp localized LlogL estimates for $S$ and $T$. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
Keywords:
locally integrable mathbb consider operators which average balls radius center respectively frac int hskip frac int mathbb purpose paper establish sharp localized llogl estimates proof rests corresponding one weight estimate martingale maximal function result which independent interest
Affiliations des auteurs :
Adam Osękowski 1
@article{10_4064_ba8039_12_2015,
author = {Adam Os\k{e}kowski},
title = {Sharp {Logarithmic} {Inequalities} for {Two} {Hardy-type} {Operators}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {237--247},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2015},
doi = {10.4064/ba8039-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8039-12-2015/}
}
TY - JOUR AU - Adam Osękowski TI - Sharp Logarithmic Inequalities for Two Hardy-type Operators JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2015 SP - 237 EP - 247 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8039-12-2015/ DO - 10.4064/ba8039-12-2015 LA - en ID - 10_4064_ba8039_12_2015 ER -
%0 Journal Article %A Adam Osękowski %T Sharp Logarithmic Inequalities for Two Hardy-type Operators %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2015 %P 237-247 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba8039-12-2015/ %R 10.4064/ba8039-12-2015 %G en %F 10_4064_ba8039_12_2015
Adam Osękowski. Sharp Logarithmic Inequalities for Two Hardy-type Operators. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 3, pp. 237-247. doi: 10.4064/ba8039-12-2015
Cité par Sources :