Sharp Logarithmic Inequalities for Two Hardy-type Operators
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 3, pp. 237-247.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any locally integrable $f$ on $\mathbb {R}^n$, we consider the operators $S$ and $T$ which average $f$ over balls of radius $|x|$ and center $0$ and $x$, respectively: $$ Sf(x)=\frac {1}{|B(0,|x|)|}\int _{B(0,|x|)} f(t)\,dt,\hskip 1em Tf(x)=\frac {1}{|B(x,|x|)|}\int _{B(x,|x|)} f(t)\,dt $$ for $x\in \mathbb {R}^n$. The purpose of the paper is to establish sharp localized LlogL estimates for $S$ and $T$. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
DOI : 10.4064/ba8039-12-2015
Keywords: locally integrable mathbb consider operators which average balls radius center respectively frac int hskip frac int mathbb purpose paper establish sharp localized llogl estimates proof rests corresponding one weight estimate martingale maximal function result which independent interest

Adam Osękowski 1

1 Department of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_ba8039_12_2015,
     author = {Adam Os\k{e}kowski},
     title = {Sharp {Logarithmic} {Inequalities} for {Two} {Hardy-type} {Operators}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {237--247},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2015},
     doi = {10.4064/ba8039-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8039-12-2015/}
}
TY  - JOUR
AU  - Adam Osękowski
TI  - Sharp Logarithmic Inequalities for Two Hardy-type Operators
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2015
SP  - 237
EP  - 247
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8039-12-2015/
DO  - 10.4064/ba8039-12-2015
LA  - en
ID  - 10_4064_ba8039_12_2015
ER  - 
%0 Journal Article
%A Adam Osękowski
%T Sharp Logarithmic Inequalities for Two Hardy-type Operators
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2015
%P 237-247
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8039-12-2015/
%R 10.4064/ba8039-12-2015
%G en
%F 10_4064_ba8039_12_2015
Adam Osękowski. Sharp Logarithmic Inequalities for Two Hardy-type Operators. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 3, pp. 237-247. doi : 10.4064/ba8039-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/ba8039-12-2015/

Cité par Sources :