Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 3, pp. 227-235.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ be an analytic function on the unit disk $\mathbb {D}$. We define a generalized Hilbert-type operator $\mathcal {H}_{a,b}$ by $$\mathcal {H}_{a,b}(f)(z)=\frac {\varGamma (a+1)}{\varGamma (b+1)}\int _{0}^{1}\frac {f(t)(1-t)^{b}}{(1-tz)^{a+1}} \,dt,$$ where $a$ and $b$ are non-negative real numbers. In particular, for $a=b=\beta ,\nobreakspace {}\mathcal {H}_{a,b}$ becomes the generalized Hilbert operator $\mathcal {H}_\beta $, and $\beta =0$ gives the classical Hilbert operator $\mathcal {H}$. In this article, we find conditions on $a$ and $b$ such that $\mathcal {H}_{a,b}$ is bounded on Dirichlet-type spaces $S^{p}$, $0 \lt p \lt 2$, and on Bergman spaces $A^{p}$, $2 \lt p \lt \infty .$ Also we find an upper bound for the norm of the operator $\mathcal {H}_{a,b}$. These generalize some results of E. Diamantopolous (2004) and S. Li (2009).
DOI : 10.4064/ba8031-1-2016
Keywords: analytic function unit disk mathbb define generalized hilbert type operator mathcal mathcal frac vargamma vargamma int frac t tz where non negative real numbers particular beta nobreakspace mathcal becomes generalized hilbert operator mathcal beta beta gives classical hilbert operator mathcal article conditions mathcal bounded dirichlet type spaces bergman spaces infty upper bound norm operator mathcal these generalize results diamantopolous

Sunanda Naik 1 ; Karabi Rajbangshi 1

1 Department of Applied Sciences Gauhati University Guwahati 781-014, India
@article{10_4064_ba8031_1_2016,
     author = {Sunanda Naik and Karabi Rajbangshi},
     title = {Generalized {Hilbert} {Operators} on {Bergman} and {Dirichlet} {Spaces} of {Analytic} {Functions}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {227--235},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2015},
     doi = {10.4064/ba8031-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8031-1-2016/}
}
TY  - JOUR
AU  - Sunanda Naik
AU  - Karabi Rajbangshi
TI  - Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2015
SP  - 227
EP  - 235
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8031-1-2016/
DO  - 10.4064/ba8031-1-2016
LA  - en
ID  - 10_4064_ba8031_1_2016
ER  - 
%0 Journal Article
%A Sunanda Naik
%A Karabi Rajbangshi
%T Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2015
%P 227-235
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8031-1-2016/
%R 10.4064/ba8031-1-2016
%G en
%F 10_4064_ba8031_1_2016
Sunanda Naik; Karabi Rajbangshi. Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 3, pp. 227-235. doi : 10.4064/ba8031-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/ba8031-1-2016/

Cité par Sources :