Reciprocal Stern Polynomials
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 2, pp. 141-147.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A partial answer is given to a problem of Ulas (2011), asking when the $n$th Stern polynomial is reciprocal.
DOI : 10.4064/ba63-2-4
Keywords: partial answer given problem ulas asking nth stern polynomial reciprocal

A. Schinzel 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland
@article{10_4064_ba63_2_4,
     author = {A. Schinzel},
     title = {Reciprocal {Stern} {Polynomials}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {141--147},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2015},
     doi = {10.4064/ba63-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-4/}
}
TY  - JOUR
AU  - A. Schinzel
TI  - Reciprocal Stern Polynomials
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2015
SP  - 141
EP  - 147
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-4/
DO  - 10.4064/ba63-2-4
LA  - en
ID  - 10_4064_ba63_2_4
ER  - 
%0 Journal Article
%A A. Schinzel
%T Reciprocal Stern Polynomials
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2015
%P 141-147
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-4/
%R 10.4064/ba63-2-4
%G en
%F 10_4064_ba63_2_4
A. Schinzel. Reciprocal Stern Polynomials. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 2, pp. 141-147. doi : 10.4064/ba63-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-4/

Cité par Sources :