Some Parity Statistics in Integer Partitions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 2, pp. 123-140.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study integer partitions with respect to the classical word statistics of levels and descents subject to prescribed parity conditions. For instance, a partition with summands $\lambda _1\ge \cdots \ge \lambda _k$ may be enumerated according to descents $\lambda _i>\lambda _{i+1}$ while tracking the individual parities of $\lambda _i$ and $\lambda _{i+1}$. There are two types of parity levels, $E=E$ and $O=O$, and four types of parity-descents, $E>E$, $E>O$, $O>E$ and $O>O$, where $E$ and $O$ represent arbitrary even and odd summands. We obtain functional equations and explicit generating functions for the number of partitions of $n$ according to the joint occurrence of the two levels. Then we obtain corresponding results for the joint occurrence of the four types of parity-descents. We also provide enumeration results for the total number of occurrences of each statistic in all partitions of $n$ together with asymptotic estimates for the average number of parity-levels in a random partition.
DOI : 10.4064/ba63-2-3
Keywords: study integer partitions respect classical word statistics levels descents subject prescribed parity conditions instance partition summands lambda cdots lambda may enumerated according descents lambda lambda while tracking individual parities lambda lambda there types parity levels types parity descents where represent arbitrary even odd summands obtain functional equations explicit generating functions number partitions according joint occurrence levels obtain corresponding results joint occurrence types parity descents provide enumeration results total number occurrences each statistic partitions together asymptotic estimates average number parity levels random partition

Aubrey Blecher 1 ; Toufik Mansour 2 ; Augustine O. Munagi 1

1 School of Mathematics University of the Witwatersrand Private Bag 3 Wits 2050, Johannesburg, South Africa
2 Department of Mathematics University of Haifa 3498838 Haifa, Israel
@article{10_4064_ba63_2_3,
     author = {Aubrey Blecher and Toufik Mansour and Augustine O. Munagi},
     title = {Some {Parity} {Statistics} in {Integer} {Partitions}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {123--140},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2015},
     doi = {10.4064/ba63-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-3/}
}
TY  - JOUR
AU  - Aubrey Blecher
AU  - Toufik Mansour
AU  - Augustine O. Munagi
TI  - Some Parity Statistics in Integer Partitions
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2015
SP  - 123
EP  - 140
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-3/
DO  - 10.4064/ba63-2-3
LA  - en
ID  - 10_4064_ba63_2_3
ER  - 
%0 Journal Article
%A Aubrey Blecher
%A Toufik Mansour
%A Augustine O. Munagi
%T Some Parity Statistics in Integer Partitions
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2015
%P 123-140
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-3/
%R 10.4064/ba63-2-3
%G en
%F 10_4064_ba63_2_3
Aubrey Blecher; Toufik Mansour; Augustine O. Munagi. Some Parity Statistics in Integer Partitions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 2, pp. 123-140. doi : 10.4064/ba63-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ba63-2-3/

Cité par Sources :