On Ternary Integral Recurrences
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 19-23.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $a,b,c,d,e,m$ are integers, $m>0$ and $(m,ac)=1$, then there exist infinitely many positive integers $n$ such that $m\mid (an+b)c^n-de^n$. Hence we derive a similar conclusion for ternary integral recurrences.
DOI : 10.4064/ba63-1-3
Keywords: prove d integers there exist infinitely many positive integers nbsp mid n de hence derive similar conclusion ternary integral recurrences

A. Schinzel 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland
@article{10_4064_ba63_1_3,
     author = {A. Schinzel},
     title = {On {Ternary} {Integral} {Recurrences}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {19--23},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2015},
     doi = {10.4064/ba63-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-3/}
}
TY  - JOUR
AU  - A. Schinzel
TI  - On Ternary Integral Recurrences
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2015
SP  - 19
EP  - 23
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-3/
DO  - 10.4064/ba63-1-3
LA  - en
ID  - 10_4064_ba63_1_3
ER  - 
%0 Journal Article
%A A. Schinzel
%T On Ternary Integral Recurrences
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2015
%P 19-23
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-3/
%R 10.4064/ba63-1-3
%G en
%F 10_4064_ba63_1_3
A. Schinzel. On Ternary Integral Recurrences. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 19-23. doi : 10.4064/ba63-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-3/

Cité par Sources :