On Ternary Integral Recurrences
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 19-23
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if $a,b,c,d,e,m$ are integers, $m>0$ and $(m,ac)=1$, then there exist infinitely many positive integers $n$ such that $m\mid (an+b)c^n-de^n$. Hence we derive a similar conclusion for ternary integral recurrences.
Keywords:
prove d integers there exist infinitely many positive integers nbsp mid n de hence derive similar conclusion ternary integral recurrences
Affiliations des auteurs :
A. Schinzel 1
@article{10_4064_ba63_1_3,
author = {A. Schinzel},
title = {On {Ternary} {Integral} {Recurrences}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {19--23},
year = {2015},
volume = {63},
number = {1},
doi = {10.4064/ba63-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-3/}
}
A. Schinzel. On Ternary Integral Recurrences. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 19-23. doi: 10.4064/ba63-1-3
Cité par Sources :