$q$-Stern Polynomials as Numerators of Continued Fractions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 11-18.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a $q$-analogue for the fact that the $n$th Stern polynomial $B_n(t)$ in the sense of Klav\v zar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of $n$ terms. Moreover, we give a combinatorial interpretation for our $q$-analogue.
DOI : 10.4064/ba63-1-2
Keywords: present q analogue the nth stern polynomial sense klav milutinovi petr adv appl math numerator continued fraction terms moreover combinatorial interpretation q analogue

Toufik Mansour 1

1 Department of Mathematics University of Haifa 3498838 Haifa, Israel
@article{10_4064_ba63_1_2,
     author = {Toufik Mansour},
     title = {$q${-Stern} {Polynomials} as {Numerators} of {Continued} {Fractions}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {11--18},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2015},
     doi = {10.4064/ba63-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-2/}
}
TY  - JOUR
AU  - Toufik Mansour
TI  - $q$-Stern Polynomials as Numerators of Continued Fractions
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2015
SP  - 11
EP  - 18
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-2/
DO  - 10.4064/ba63-1-2
LA  - en
ID  - 10_4064_ba63_1_2
ER  - 
%0 Journal Article
%A Toufik Mansour
%T $q$-Stern Polynomials as Numerators of Continued Fractions
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2015
%P 11-18
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-2/
%R 10.4064/ba63-1-2
%G en
%F 10_4064_ba63_1_2
Toufik Mansour. $q$-Stern Polynomials as Numerators of Continued Fractions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 11-18. doi : 10.4064/ba63-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-2/

Cité par Sources :