$q$-Stern Polynomials as Numerators of Continued Fractions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 11-18
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present a $q$-analogue for the fact that the $n$th Stern polynomial $B_n(t)$ in the sense of Klav\v zar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of $n$ terms. Moreover, we give a combinatorial interpretation for our $q$-analogue.
Keywords:
present q analogue the nth stern polynomial sense klav milutinovi petr adv appl math numerator continued fraction terms moreover combinatorial interpretation q analogue
Affiliations des auteurs :
Toufik Mansour 1
@article{10_4064_ba63_1_2,
author = {Toufik Mansour},
title = {$q${-Stern} {Polynomials} as {Numerators} of {Continued} {Fractions}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {11--18},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2015},
doi = {10.4064/ba63-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-2/}
}
TY - JOUR AU - Toufik Mansour TI - $q$-Stern Polynomials as Numerators of Continued Fractions JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2015 SP - 11 EP - 18 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-2/ DO - 10.4064/ba63-1-2 LA - en ID - 10_4064_ba63_1_2 ER -
Toufik Mansour. $q$-Stern Polynomials as Numerators of Continued Fractions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 11-18. doi: 10.4064/ba63-1-2
Cité par Sources :