On the Existence of Free Ultrafilters on $\omega $ and on Russell-sets in ZF
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 1-10
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In $\mathbf{ZF}$ (i.e. Zermelo–Fraenkel set theory without the Axiom of Choice $\mathbf{AC}$), we investigate the relationship between $\mathbf{UF}(\omega)$ (there exists a free ultrafilter on $\omega$) and the statements ‶there exists a free ultrafilter on every Russell-set″ and ‶there exists a Russell-set $A$ and a free ultrafilter $\mathcal F$ on $A$″. We establish the following results: 1. $\mathbf{UF}(\omega)$ implies that there exists a free ultrafilter on every Russell-set. The implication is not reversible in $\mathbf{ZF}$. 2. The statement there exists a free ultrafilter on every Russell-set″ is not provable in $\mathbf{ZF}$. 3. If there exists a Russell-set $A$ and a free ultrafilter on $A$, then $\mathbf{UF}(\omega)$ holds. The implication is not reversible in $\mathbf{ZF}$. 4. If there exists a Russell-set $A$ and a free ultrafilter on $A$, then there exists a free ultrafilter on every Russell-set. We also observe the following: (a) The statements $\mathbf{BPI}(\omega)$ (every proper filter on $\omega$ can be extended to an ultrafilter on $\omega$) and ‶there exists a Russell-set $A$ and a free ultrafilter $\mathcal F$ on $A$″ are independent of each other in $\mathbf{ZF}$. (b) The statement ‶there exists a Russell-set and there exists a free ultrafilter on every Russell-set″ is, in $\mathbf{ZF}$, equivalent to ‶there exists a Russell-set $A$ and a free ultrafilter $\mathcal F$ on $A$″. Thus, ‶there exists a Russell-set and there exists a free ultrafilter on every Russell-set″ is also relatively consistent with $\mathbf{ZF}$.
Keywords:
mathbf zermelo fraenkel set theory without axiom choice mathbf investigate relationship between mathbf omega there exists ultrafilter omega statements there exists ultrafilter every russell set there exists russell set ultrafilter mathcal establish following results mathbf omega implies there exists ultrafilter every russell set implication reversible mathbf statement there exists ultrafilter every russell set provable mathbf there exists russell set ultrafilter mathbf omega holds implication reversible mathbf there exists russell set ultrafilter there exists ultrafilter every russell set observe following statements mathbf bpi omega every proper filter omega extended ultrafilter omega there exists russell set ultrafilter mathcal independent each other mathbf statement there exists russell set there exists ultrafilter every russell set mathbf equivalent there exists russell set ultrafilter mathcal there exists russell set there exists ultrafilter every russell set relatively consistent mathbf
Affiliations des auteurs :
Eleftherios Tachtsis 1
@article{10_4064_ba63_1_1,
author = {Eleftherios Tachtsis},
title = {On the {Existence} of {Free} {Ultrafilters} on $\omega $ and on {Russell-sets} in {ZF}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {1--10},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2015},
doi = {10.4064/ba63-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-1/}
}
TY - JOUR AU - Eleftherios Tachtsis TI - On the Existence of Free Ultrafilters on $\omega $ and on Russell-sets in ZF JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2015 SP - 1 EP - 10 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-1/ DO - 10.4064/ba63-1-1 LA - en ID - 10_4064_ba63_1_1 ER -
%0 Journal Article %A Eleftherios Tachtsis %T On the Existence of Free Ultrafilters on $\omega $ and on Russell-sets in ZF %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2015 %P 1-10 %V 63 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba63-1-1/ %R 10.4064/ba63-1-1 %G en %F 10_4064_ba63_1_1
Eleftherios Tachtsis. On the Existence of Free Ultrafilters on $\omega $ and on Russell-sets in ZF. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) no. 1, pp. 1-10. doi: 10.4064/ba63-1-1
Cité par Sources :