Characteristic Exponents of Rational Functions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 3, pp. 257-263
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider two characteristic exponents of a rational function
$f:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ of degree $d\ge 2$. The
exponent $\chi_a(f)$ is the average of $\log \|f'\|$ with respect to
the measure of maximal entropy. The exponent $\chi_m(f)$ can be
defined as the maximal characteristic exponent over all periodic
orbits of $f$. We prove that $\chi_a(f)=\chi_m(f)$ if and only if
$f(z)$ is conformally conjugate to $z\mapsto z^{\pm d}$.
Keywords:
consider characteristic exponents rational function hat mathbb hat mathbb degree exponent chi average log respect measure maximal entropy exponent chi defined maximal characteristic exponent periodic orbits prove chi chi only conformally conjugate mapsto
Affiliations des auteurs :
Anna Zdunik  1
@article{10_4064_ba62_3_6,
author = {Anna Zdunik},
title = {Characteristic {Exponents} of {Rational} {Functions}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {257--263},
year = {2014},
volume = {62},
number = {3},
doi = {10.4064/ba62-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-6/}
}
Anna Zdunik. Characteristic Exponents of Rational Functions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 3, pp. 257-263. doi: 10.4064/ba62-3-6
Cité par Sources :