Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 3, pp. 211-214
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Diophantine equation $A^2 + nB^4 = C^3$ has infinitely many integral solutions $A, B, C$ for any fixed integer $n$. The case $n = 0$ is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Keywords:
diophantine equation has infinitely many integral solutions fixed integer trivial using polynomial identity generate these solutions conditions solutions pairwise co prime
Affiliations des auteurs :
Susil Kumar Jena 1
@article{10_4064_ba62_3_2,
author = {Susil Kumar Jena},
title = {Parametric {Solutions} of the {Diophantine} {Equation} $A^2 + nB^4 = C^3$},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {211--214},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {2014},
doi = {10.4064/ba62-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-2/}
}
TY - JOUR AU - Susil Kumar Jena TI - Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$ JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2014 SP - 211 EP - 214 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-2/ DO - 10.4064/ba62-3-2 LA - en ID - 10_4064_ba62_3_2 ER -
%0 Journal Article %A Susil Kumar Jena %T Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$ %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2014 %P 211-214 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-2/ %R 10.4064/ba62-3-2 %G en %F 10_4064_ba62_3_2
Susil Kumar Jena. Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 3, pp. 211-214. doi: 10.4064/ba62-3-2
Cité par Sources :