Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 3, pp. 211-214.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Diophantine equation $A^2 + nB^4 = C^3$ has infinitely many integral solutions $A, B, C$ for any fixed integer $n$. The case $n = 0$ is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
DOI : 10.4064/ba62-3-2
Keywords: diophantine equation has infinitely many integral solutions fixed integer trivial using polynomial identity generate these solutions conditions solutions pairwise co prime

Susil Kumar Jena 1

1 Department of Electronics & Telecommunication Engineering KIIT University, Bhubaneswar 751024 Odisha, India
@article{10_4064_ba62_3_2,
     author = {Susil Kumar Jena},
     title = {Parametric {Solutions} of the {Diophantine} {Equation} $A^2 + nB^4 = C^3$},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {211--214},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2014},
     doi = {10.4064/ba62-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-2/}
}
TY  - JOUR
AU  - Susil Kumar Jena
TI  - Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2014
SP  - 211
EP  - 214
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-2/
DO  - 10.4064/ba62-3-2
LA  - en
ID  - 10_4064_ba62_3_2
ER  - 
%0 Journal Article
%A Susil Kumar Jena
%T Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2014
%P 211-214
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-2/
%R 10.4064/ba62-3-2
%G en
%F 10_4064_ba62_3_2
Susil Kumar Jena. Parametric Solutions of the Diophantine Equation $A^2 + nB^4 = C^3$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 3, pp. 211-214. doi : 10.4064/ba62-3-2. http://geodesic.mathdoc.fr/articles/10.4064/ba62-3-2/

Cité par Sources :