Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 187-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(h_k)_{k\geq 0}$ be the Haar system on $[0,1]$. We show that for any vectors $a_k$ from a separable Hilbert space $\mathcal{H}$ and any $\varepsilon_k\in [-1,1]$, $k=0,1,2,\ldots,$ we have the sharp inequality $$ \Bigl\|\sum_{k=0}^n \varepsilon_ka_kh_k\Big\|_{W([0,1])}\leq 2\Bigl\|\sum_{k=0}^n a_kh_k\Big\|_{L^\infty([0,1])},\quad\ n=0,1,2,\ldots,$$ where $W([0,1])$ is the weak-$L^\infty$ space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound $$ \|Y\|_{W(\varOmega)}\leq 2\|X\|_{L^\infty(\varOmega)},$$ where $X$ and $Y$ stand for $\mathcal{H}$-valued martingales such that $Y$ is differentially subordinate to $X$. An application to harmonic functions on Euclidean domains is presented.
DOI : 10.4064/ba62-2-7
Keywords: geq haar system vectors separable hilbert space mathcal varepsilon ldots have sharp inequality bigl sum varepsilon leq bigl sum infty quad ldots where weak l infty space introduced bennett devore sharpley above estimate generalized sharp weak type bound varomega leq infty varomega where stand mathcal valued martingales differentially subordinate nbsp application harmonic functions euclidean domains presented

Adam Osękowski 1

1 Department of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_ba62_2_7,
     author = {Adam Os\k{e}kowski},
     title = {Sharp {Weak-Type} {Inequality} for the {Haar} {System,} {Harmonic} {Functions} and {Martingales}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {187--196},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2014},
     doi = {10.4064/ba62-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-7/}
}
TY  - JOUR
AU  - Adam Osękowski
TI  - Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2014
SP  - 187
EP  - 196
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-7/
DO  - 10.4064/ba62-2-7
LA  - en
ID  - 10_4064_ba62_2_7
ER  - 
%0 Journal Article
%A Adam Osękowski
%T Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2014
%P 187-196
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-7/
%R 10.4064/ba62-2-7
%G en
%F 10_4064_ba62_2_7
Adam Osękowski. Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 187-196. doi : 10.4064/ba62-2-7. http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-7/

Cité par Sources :