Generalizations of Kaplansky's Theorem Involving Unbounded Linear Operators
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 181-186.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We are mainly concerned with the result of Kaplansky on the composition of two normal operators in the case in which at least one of the operators is unbounded.
DOI : 10.4064/ba62-2-6
Keywords: mainly concerned result kaplansky composition normal operators which least operators unbounded

Abdelkader Benali 1 ; Mohammed Hichem Mortad 1

1 Department of Mathematics University of Oran B.P. 1524, El Menouar Oran 31000, Algeria
@article{10_4064_ba62_2_6,
     author = {Abdelkader Benali and Mohammed Hichem Mortad},
     title = {Generalizations of {Kaplansky's} {Theorem} {Involving} {Unbounded} {Linear} {Operators}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {181--186},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2014},
     doi = {10.4064/ba62-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-6/}
}
TY  - JOUR
AU  - Abdelkader Benali
AU  - Mohammed Hichem Mortad
TI  - Generalizations of Kaplansky's Theorem Involving Unbounded Linear Operators
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2014
SP  - 181
EP  - 186
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-6/
DO  - 10.4064/ba62-2-6
LA  - en
ID  - 10_4064_ba62_2_6
ER  - 
%0 Journal Article
%A Abdelkader Benali
%A Mohammed Hichem Mortad
%T Generalizations of Kaplansky's Theorem Involving Unbounded Linear Operators
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2014
%P 181-186
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-6/
%R 10.4064/ba62-2-6
%G en
%F 10_4064_ba62_2_6
Abdelkader Benali; Mohammed Hichem Mortad. Generalizations of Kaplansky's Theorem Involving Unbounded Linear Operators. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 181-186. doi : 10.4064/ba62-2-6. http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-6/

Cité par Sources :