Truncation and Duality Results for Hopf Image Algebras
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 161-179
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Associated to an Hadamard matrix $H\in M_N(\mathbb C)$ is the
spectral measure $\mu\in\mathcal P[0,N]$ of the corresponding Hopf
image algebra, $A=C(G)$ with $G\subset S_N^+$. We study
a certain family of discrete measures $\mu^r\in\mathcal P[0,N]$,
coming from the idempotent state theory of $G$, which converge in
Cesàro limit to $\mu$. Our main result is a duality formula of
type $\int_0^N(x/N)^p\,d\mu^r(x)=\int_0^N(x/N)^r\,d\nu^p(x)$, where
$\mu^r,\nu^r$ are the truncations of the spectral measures $\mu,\nu$
associated to $H,H^t$. We also prove, using these truncations
$\mu^r,\nu^r$, that for any deformed Fourier matrix
$H=F_M\otimes_QF_N$ we have $\mu=\nu$.
Keywords:
associated hadamard matrix mathbb spectral measure mathcal corresponding hopf image algebra subset study certain family discrete measures mathcal coming idempotent state theory which converge ces limit main result duality formula type int int where truncations spectral measures associated prove using these truncations deformed fourier matrix otimes have
Affiliations des auteurs :
Teodor Banica  1
@article{10_4064_ba62_2_5,
author = {Teodor Banica},
title = {Truncation and {Duality} {Results} for {Hopf} {Image} {Algebras}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {161--179},
year = {2014},
volume = {62},
number = {2},
doi = {10.4064/ba62-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-5/}
}
TY - JOUR AU - Teodor Banica TI - Truncation and Duality Results for Hopf Image Algebras JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2014 SP - 161 EP - 179 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-5/ DO - 10.4064/ba62-2-5 LA - en ID - 10_4064_ba62_2_5 ER -
Teodor Banica. Truncation and Duality Results for Hopf Image Algebras. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 161-179. doi: 10.4064/ba62-2-5
Cité par Sources :