Truncation and Duality Results for Hopf Image Algebras
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 161-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Associated to an Hadamard matrix $H\in M_N(\mathbb C)$ is the spectral measure $\mu\in\mathcal P[0,N]$ of the corresponding Hopf image algebra, $A=C(G)$ with $G\subset S_N^+$. We study a certain family of discrete measures $\mu^r\in\mathcal P[0,N]$, coming from the idempotent state theory of $G$, which converge in Cesàro limit to $\mu$. Our main result is a duality formula of type $\int_0^N(x/N)^p\,d\mu^r(x)=\int_0^N(x/N)^r\,d\nu^p(x)$, where $\mu^r,\nu^r$ are the truncations of the spectral measures $\mu,\nu$ associated to $H,H^t$. We also prove, using these truncations $\mu^r,\nu^r$, that for any deformed Fourier matrix $H=F_M\otimes_QF_N$ we have $\mu=\nu$.
DOI : 10.4064/ba62-2-5
Keywords: associated hadamard matrix mathbb spectral measure mathcal corresponding hopf image algebra subset study certain family discrete measures mathcal coming idempotent state theory which converge ces limit main result duality formula type int int where truncations spectral measures associated prove using these truncations deformed fourier matrix otimes have

Teodor Banica 1

1 Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise, France
@article{10_4064_ba62_2_5,
     author = {Teodor Banica},
     title = {Truncation and {Duality} {Results} for {Hopf} {Image} {Algebras}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {161--179},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2014},
     doi = {10.4064/ba62-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-5/}
}
TY  - JOUR
AU  - Teodor Banica
TI  - Truncation and Duality Results for Hopf Image Algebras
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2014
SP  - 161
EP  - 179
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-5/
DO  - 10.4064/ba62-2-5
LA  - en
ID  - 10_4064_ba62_2_5
ER  - 
%0 Journal Article
%A Teodor Banica
%T Truncation and Duality Results for Hopf Image Algebras
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2014
%P 161-179
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-5/
%R 10.4064/ba62-2-5
%G en
%F 10_4064_ba62_2_5
Teodor Banica. Truncation and Duality Results for Hopf Image Algebras. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 161-179. doi : 10.4064/ba62-2-5. http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-5/

Cité par Sources :