On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 61-76
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We say that a function $f$ from $[0,1]$ to a Banach space $X$ is increasing with respect to $E\subset X^*$ if $x^*\circ f$ is increasing for every $x^*\in E$. A function $f:[0,1]^m\to X$ is separately increasing if it is increasing in each variable separately. We show that if $X$ is a Banach space that does not contain any isomorphic copy of $c_0$ or such that $X^*$ is separable, then for every separately increasing function $f:[0,1]^m\to X$ with respect to any norming subset there exists a separately increasing function $g:[0,1]^m\to \mathbb R$ such that the sets of points of discontinuity of $f$ and $g$ coincide.
Keywords:
say function banach space increasing respect subset * * circ increasing every * function separately increasing increasing each variable separately banach space does contain isomorphic copy * separable every separately increasing function respect norming subset there exists separately increasing function mathbb sets points discontinuity coincide
Affiliations des auteurs :
Artur Michalak 1
@article{10_4064_ba62_1_7,
author = {Artur Michalak},
title = {On {Some} {Properties} of {Separately} {Increasing} {Functions} from $[0,1]^n$ into a {Banach} {Space}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {61--76},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2014},
doi = {10.4064/ba62-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-7/}
}
TY - JOUR AU - Artur Michalak TI - On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2014 SP - 61 EP - 76 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-7/ DO - 10.4064/ba62-1-7 LA - en ID - 10_4064_ba62_1_7 ER -
%0 Journal Article %A Artur Michalak %T On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2014 %P 61-76 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-7/ %R 10.4064/ba62-1-7 %G en %F 10_4064_ba62_1_7
Artur Michalak. On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 61-76. doi: 10.4064/ba62-1-7
Cité par Sources :