On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 61-76.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We say that a function $f$ from $[0,1]$ to a Banach space $X$ is increasing with respect to $E\subset X^*$ if $x^*\circ f$ is increasing for every $x^*\in E$. A function $f:[0,1]^m\to X$ is separately increasing if it is increasing in each variable separately. We show that if $X$ is a Banach space that does not contain any isomorphic copy of $c_0$ or such that $X^*$ is separable, then for every separately increasing function $f:[0,1]^m\to X$ with respect to any norming subset there exists a separately increasing function $g:[0,1]^m\to \mathbb R$ such that the sets of points of discontinuity of $f$ and $g$ coincide.
DOI : 10.4064/ba62-1-7
Keywords: say function banach space increasing respect subset * * circ increasing every * function separately increasing increasing each variable separately banach space does contain isomorphic copy * separable every separately increasing function respect norming subset there exists separately increasing function mathbb sets points discontinuity coincide

Artur Michalak 1

1 Faculty of Mathematics and Computer Science Adam Mickiewicz University Umultowska 87 61-614 Poznań, Poland
@article{10_4064_ba62_1_7,
     author = {Artur Michalak},
     title = {On {Some} {Properties} of {Separately} {Increasing} {Functions} from $[0,1]^n$ into a {Banach} {Space}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2014},
     doi = {10.4064/ba62-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-7/}
}
TY  - JOUR
AU  - Artur Michalak
TI  - On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2014
SP  - 61
EP  - 76
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-7/
DO  - 10.4064/ba62-1-7
LA  - en
ID  - 10_4064_ba62_1_7
ER  - 
%0 Journal Article
%A Artur Michalak
%T On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2014
%P 61-76
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-7/
%R 10.4064/ba62-1-7
%G en
%F 10_4064_ba62_1_7
Artur Michalak. On Some Properties of Separately Increasing Functions from $[0,1]^n$ into a Banach Space. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 61-76. doi : 10.4064/ba62-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-7/

Cité par Sources :