On a Problem of Best Uniform Approximation
and a Polynomial Inequality of Visser
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 43-48
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this paper, a generalization of a result on the uniform best approximation of $\alpha \cos{n x} + \beta \sin{n x}$ by trigonometric polynomials of degree less than $n$ is considered and its relationship with a well-known polynomial inequality of C. Visser is indicated.
Keywords:
paper generalization result uniform best approximation alpha cos beta sin trigonometric polynomials degree considered its relationship well known polynomial inequality visser indicated
Affiliations des auteurs :
M. A. Qazi 1
@article{10_4064_ba62_1_5,
author = {M. A. Qazi},
title = {On a {Problem} of {Best} {Uniform} {Approximation}
and a {Polynomial} {Inequality} of {Visser}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {43--48},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2014},
doi = {10.4064/ba62-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-5/}
}
TY - JOUR AU - M. A. Qazi TI - On a Problem of Best Uniform Approximation and a Polynomial Inequality of Visser JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2014 SP - 43 EP - 48 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-5/ DO - 10.4064/ba62-1-5 LA - en ID - 10_4064_ba62_1_5 ER -
%0 Journal Article %A M. A. Qazi %T On a Problem of Best Uniform Approximation and a Polynomial Inequality of Visser %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2014 %P 43-48 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-5/ %R 10.4064/ba62-1-5 %G en %F 10_4064_ba62_1_5
M. A. Qazi. On a Problem of Best Uniform Approximation and a Polynomial Inequality of Visser. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 43-48. doi: 10.4064/ba62-1-5
Cité par Sources :