On $n$-derivations and Relations between
Elements $r^{n}-r$ for Some $n$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 29-42
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We find complete sets of generating relations between the elements $[r]=r^n-r$ for $n=2^l$ and for $n=3$. One of these relations is the $n$-derivation property $[rs]=r^{n}[s]+s[r]$, $r,s \in R$.
Keywords:
complete sets generating relations between elements n r these relations n derivation property
Affiliations des auteurs :
Maciej Maciejewski 1 ; Andrzej Prószyński 1
@article{10_4064_ba62_1_4,
author = {Maciej Maciejewski and Andrzej Pr\'oszy\'nski},
title = {On $n$-derivations and {Relations} between
{Elements} $r^{n}-r$ for {Some} $n$},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {29--42},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2014},
doi = {10.4064/ba62-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-4/}
}
TY - JOUR
AU - Maciej Maciejewski
AU - Andrzej Prószyński
TI - On $n$-derivations and Relations between
Elements $r^{n}-r$ for Some $n$
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2014
SP - 29
EP - 42
VL - 62
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-4/
DO - 10.4064/ba62-1-4
LA - en
ID - 10_4064_ba62_1_4
ER -
%0 Journal Article
%A Maciej Maciejewski
%A Andrzej Prószyński
%T On $n$-derivations and Relations between
Elements $r^{n}-r$ for Some $n$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2014
%P 29-42
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-4/
%R 10.4064/ba62-1-4
%G en
%F 10_4064_ba62_1_4
Maciej Maciejewski; Andrzej Prószyński. On $n$-derivations and Relations between
Elements $r^{n}-r$ for Some $n$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 29-42. doi: 10.4064/ba62-1-4
Cité par Sources :