Stern Polynomials as Numerators of Continued Fractions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 23-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that the $n$th Stern polynomial $B_{n}(t)$ in the sense of Klavžar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of $n$ terms. This generalizes a result of Graham, Knuth and Patashnik concerning the Stern sequence $B_n(1)$. As an application, the degree of $B_n(t)$ is expressed in terms of the binary expansion of $n$.
Keywords:
proved nth stern polynomial sense klav milutinovi petr adv appl math numerator continued fraction terms generalizes result graham knuth patashnik concerning stern sequence application degree expressed terms binary expansion nbsp
Affiliations des auteurs :
A. Schinzel 1
@article{10_4064_ba62_1_3,
author = {A. Schinzel},
title = {Stern {Polynomials} as {Numerators} of {Continued} {Fractions}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {23--27},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2014},
doi = {10.4064/ba62-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-3/}
}
TY - JOUR AU - A. Schinzel TI - Stern Polynomials as Numerators of Continued Fractions JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2014 SP - 23 EP - 27 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba62-1-3/ DO - 10.4064/ba62-1-3 LA - en ID - 10_4064_ba62_1_3 ER -
A. Schinzel. Stern Polynomials as Numerators of Continued Fractions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 1, pp. 23-27. doi: 10.4064/ba62-1-3
Cité par Sources :