Two Kinds of Invariance of Full Conditional Probabilities
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 277-283.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a group acting on $\Omega$ and $\scr F$ a $G$-invariant algebra of subsets of $\Omega$. A full conditional probability on $\scr F$ is a function $P:\scr F\times (\scr F\backslash \{ \varnothing \})\to[0,1]$ satisfying the obvious axioms (with only finite additivity). It is weakly $G$-invariant provided that $P(gA\,|\, gB)=P(A\,|\, B)$ for all $g\in G$ and $A,B\in \scr F$, and strongly $G$-invariant provided that $P(gA\,|\, B)=P(A\,|\, B)$ whenever $g\in G$ and $A\cup gA\subseteq B$. Armstrong (1989) claimed that weak and strong invariance are equivalent, but we shall show that this is false and that weak $G$-invariance implies strong $G$-invariance for every $\Omega$, $\scr F$ and $P$ as above if and only if $G$ has no non-trivial left-orderable quotient. In particular, $G=\mathbb Z$ provides a counterexample to Armstrong's claim.
DOI : 10.4064/ba61-3-9
Keywords: group acting omega scr g invariant algebra subsets omega full conditional probability scr function scr times scr backslash varnothing satisfying obvious axioms only finite additivity weakly g invariant provided scr strongly g invariant provided whenever cup subseteq armstrong claimed weak strong invariance equivalent shall false weak g invariance implies strong g invariance every omega scr above only has non trivial left orderable quotient particular mathbb provides counterexample armstrongs claim

Alexander R. Pruss 1

1 Department of Philosophy Baylor University One Bear Place #97273 Waco, TX 76798-7273, U.S.A.
@article{10_4064_ba61_3_9,
     author = {Alexander R. Pruss},
     title = {Two {Kinds} of {Invariance} of {Full} {Conditional} {Probabilities}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {277--283},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2013},
     doi = {10.4064/ba61-3-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-9/}
}
TY  - JOUR
AU  - Alexander R. Pruss
TI  - Two Kinds of Invariance of Full Conditional Probabilities
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2013
SP  - 277
EP  - 283
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-9/
DO  - 10.4064/ba61-3-9
LA  - en
ID  - 10_4064_ba61_3_9
ER  - 
%0 Journal Article
%A Alexander R. Pruss
%T Two Kinds of Invariance of Full Conditional Probabilities
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2013
%P 277-283
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-9/
%R 10.4064/ba61-3-9
%G en
%F 10_4064_ba61_3_9
Alexander R. Pruss. Two Kinds of Invariance of Full Conditional Probabilities. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 277-283. doi : 10.4064/ba61-3-9. http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-9/

Cité par Sources :