Remarks on Star-Hurewicz Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 247-255
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A space $X$ is star-Hurewicz if for each sequence $(\mathcal U_n:n\in \mathbb N)$ of open covers of $X$ there exists a sequence $(\mathcal V_n:n\in \mathbb N)$ such that for each $n$, $\mathcal V_n$ is a finite subset of $\mathcal U_n$, and for each $x\in X$, $x\in \mathrm {St}(\bigcup \mathcal V_n,\mathcal U_n)$ for all but finitely many $n$. We investigate the relationship between star-Hurewicz spaces and related spaces, and also study topological properties of star-Hurewicz spaces.
Mots-clés :
space star hurewicz each sequence mathcal mathbb covers there exists sequence mathcal mathbb each nbsp mathcal finite subset nbsp mathcal each mathrm bigcup mathcal mathcal finitely many nbsp investigate relationship between star hurewicz spaces related spaces study topological properties star hurewicz spaces
Affiliations des auteurs :
Yan-Kui Song 1
@article{10_4064_ba61_3_6,
author = {Yan-Kui Song},
title = {Remarks on {Star-Hurewicz} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {247--255},
year = {2013},
volume = {61},
number = {3},
doi = {10.4064/ba61-3-6},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-6/}
}
Yan-Kui Song. Remarks on Star-Hurewicz Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 247-255. doi: 10.4064/ba61-3-6
Cité par Sources :