Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 209-218.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assume that $u$, $v$ are conjugate harmonic functions on the unit disc of $\mathbb{C}$, normalized so that $u(0)=v(0)=0$. Let $u^*$, $|v|^*$ stand for the one- and two-sided Brownian maxima of $u$ and $v$, respectively. The paper contains the proof of the sharp weak-type estimate $$ \mathbb{P}(|v|^*\geq 1)\leq \frac{1+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots}{1-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\ldots} \,\mathbb E u^*.$$ Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined on Euclidean domains. The proof exploits a novel estimate for orthogonal martingales satisfying differential subordination.
DOI : 10.4064/ba61-3-3
Keywords: assume conjugate harmonic functions unit disc mathbb normalized * * stand one two sided brownian maxima respectively paper contains proof sharp weak type estimate mathbb * geq leq frac frac frac frac ldots frac frac frac ldots mathbb * actually estimate shown general setting differentially subordinate harmonic functions defined euclidean domains proof exploits novel estimate orthogonal martingales satisfying differential subordination

Adam Osękowski 1

1 Department of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_ba61_3_3,
     author = {Adam Os\k{e}kowski},
     title = {Maximal {Weak-Type} {Inequality} for {Orthogonal} {Harmonic} {Functions} and {Martingales}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2013},
     doi = {10.4064/ba61-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-3/}
}
TY  - JOUR
AU  - Adam Osękowski
TI  - Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2013
SP  - 209
EP  - 218
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-3/
DO  - 10.4064/ba61-3-3
LA  - en
ID  - 10_4064_ba61_3_3
ER  - 
%0 Journal Article
%A Adam Osękowski
%T Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2013
%P 209-218
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-3/
%R 10.4064/ba61-3-3
%G en
%F 10_4064_ba61_3_3
Adam Osękowski. Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 209-218. doi : 10.4064/ba61-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-3/

Cité par Sources :