Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 209-218
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assume that $u$, $v$ are conjugate harmonic functions on the unit disc of $\mathbb{C}$, normalized so that $u(0)=v(0)=0$. Let $u^*$, $|v|^*$ stand for the one- and two-sided Brownian maxima of $u$ and $v$, respectively. The paper contains the proof of the sharp weak-type estimate
$$ \mathbb{P}(|v|^*\geq 1)\leq \frac{1+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots}{1-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\ldots} \,\mathbb E u^*.$$
Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined on Euclidean domains. The proof exploits a novel estimate for orthogonal martingales satisfying differential subordination.
Keywords:
assume conjugate harmonic functions unit disc mathbb normalized * * stand one two sided brownian maxima respectively paper contains proof sharp weak type estimate mathbb * geq leq frac frac frac frac ldots frac frac frac ldots mathbb * actually estimate shown general setting differentially subordinate harmonic functions defined euclidean domains proof exploits novel estimate orthogonal martingales satisfying differential subordination
Affiliations des auteurs :
Adam Osękowski 1
@article{10_4064_ba61_3_3,
author = {Adam Os\k{e}kowski},
title = {Maximal {Weak-Type} {Inequality} for {Orthogonal} {Harmonic} {Functions} and {Martingales}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {209--218},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {2013},
doi = {10.4064/ba61-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-3/}
}
TY - JOUR AU - Adam Osękowski TI - Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2013 SP - 209 EP - 218 VL - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-3/ DO - 10.4064/ba61-3-3 LA - en ID - 10_4064_ba61_3_3 ER -
%0 Journal Article %A Adam Osękowski %T Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2013 %P 209-218 %V 61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba61-3-3/ %R 10.4064/ba61-3-3 %G en %F 10_4064_ba61_3_3
Adam Osękowski. Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 3, pp. 209-218. doi: 10.4064/ba61-3-3
Cité par Sources :