On the Maximal Lévy–Ottaviani Inequality for Sums of Independent and Dependent Random Vectors
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 155-160
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the sums $S_k$ of independent random vectors satisfy
\[
P\left(\max_{1\leq k\leq n} \| S_k\| > 3t\right) \leq 2\max_{1\leq k\leq n} P(\|S_k\| > t),\quad t\geq 0.
\]
Keywords:
prove sums independent random vectors satisfy max leq leq right leq max leq leq quad geq
Affiliations des auteurs :
Zbigniew S. Szewczak 1
@article{10_4064_ba61_2_9,
author = {Zbigniew S. Szewczak},
title = {On the {Maximal} {L\'evy{\textendash}Ottaviani} {Inequality} for {Sums} of {Independent} and {Dependent} {Random} {Vectors}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {155--160},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2013},
doi = {10.4064/ba61-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-9/}
}
TY - JOUR AU - Zbigniew S. Szewczak TI - On the Maximal Lévy–Ottaviani Inequality for Sums of Independent and Dependent Random Vectors JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2013 SP - 155 EP - 160 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-9/ DO - 10.4064/ba61-2-9 LA - en ID - 10_4064_ba61_2_9 ER -
%0 Journal Article %A Zbigniew S. Szewczak %T On the Maximal Lévy–Ottaviani Inequality for Sums of Independent and Dependent Random Vectors %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2013 %P 155-160 %V 61 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-9/ %R 10.4064/ba61-2-9 %G en %F 10_4064_ba61_2_9
Zbigniew S. Szewczak. On the Maximal Lévy–Ottaviani Inequality for Sums of Independent and Dependent Random Vectors. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 155-160. doi: 10.4064/ba61-2-9
Cité par Sources :