The Brouwer Fixed Point Theorem for Some Set Mappings
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 133-140
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For some classes $X \subset 2^{\mathbb {B}_n}$ of closed subsets of the disc $\mathbb {B}_n \subset \mathbb {R}^n$ we prove that every Hausdorff-continuous mapping $f : X \rightarrow X$ has a fixed point $A \in X$ in the sense that the intersection $A \cap f(A)$ is nonempty.
Keywords:
classes subset mathbb closed subsets disc mathbb subset mathbb prove every hausdorff continuous mapping rightarrow has fixed point sense intersection cap nonempty
Affiliations des auteurs :
Dariusz Miklaszewski 1
@article{10_4064_ba61_2_6,
author = {Dariusz Miklaszewski},
title = {The {Brouwer} {Fixed} {Point} {Theorem} for {Some} {Set} {Mappings}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {133--140},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2013},
doi = {10.4064/ba61-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-6/}
}
TY - JOUR AU - Dariusz Miklaszewski TI - The Brouwer Fixed Point Theorem for Some Set Mappings JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2013 SP - 133 EP - 140 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-6/ DO - 10.4064/ba61-2-6 LA - en ID - 10_4064_ba61_2_6 ER -
%0 Journal Article %A Dariusz Miklaszewski %T The Brouwer Fixed Point Theorem for Some Set Mappings %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2013 %P 133-140 %V 61 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-6/ %R 10.4064/ba61-2-6 %G en %F 10_4064_ba61_2_6
Dariusz Miklaszewski. The Brouwer Fixed Point Theorem for Some Set Mappings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 133-140. doi: 10.4064/ba61-2-6
Cité par Sources :