The Brouwer Fixed Point Theorem for Some Set Mappings
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 133-140.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For some classes $X \subset 2^{\mathbb {B}_n}$ of closed subsets of the disc $\mathbb {B}_n \subset \mathbb {R}^n$ we prove that every Hausdorff-continuous mapping $f : X \rightarrow X$ has a fixed point $A \in X$ in the sense that the intersection $A \cap f(A)$ is nonempty.
DOI : 10.4064/ba61-2-6
Keywords: classes subset mathbb closed subsets disc mathbb subset mathbb prove every hausdorff continuous mapping rightarrow has fixed point sense intersection cap nonempty

Dariusz Miklaszewski 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_ba61_2_6,
     author = {Dariusz Miklaszewski},
     title = {The {Brouwer} {Fixed} {Point} {Theorem} for {Some} {Set} {Mappings}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {133--140},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2013},
     doi = {10.4064/ba61-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-6/}
}
TY  - JOUR
AU  - Dariusz Miklaszewski
TI  - The Brouwer Fixed Point Theorem for Some Set Mappings
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2013
SP  - 133
EP  - 140
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-6/
DO  - 10.4064/ba61-2-6
LA  - en
ID  - 10_4064_ba61_2_6
ER  - 
%0 Journal Article
%A Dariusz Miklaszewski
%T The Brouwer Fixed Point Theorem for Some Set Mappings
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2013
%P 133-140
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-6/
%R 10.4064/ba61-2-6
%G en
%F 10_4064_ba61_2_6
Dariusz Miklaszewski. The Brouwer Fixed Point Theorem for Some Set Mappings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 133-140. doi : 10.4064/ba61-2-6. http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-6/

Cité par Sources :