Moment Inequality for the Martingale Square Function
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 169-180
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Consider the sequence $(C_n)_{n\geq 1}$ of positive numbers defined by $C_1=1$ and $C_{n+1}=1+C_n^2/4$, $n=1,2,\ldots.$ Let $M$ be a real-valued martingale and let $S(M)$ denote its square function. We establish the bound
$$
\mathbb E |M_n|\leq C_n\mathbb E S_n(M),\ \quad n=1,2 ,\ldots,
$$
and show that for each $n$, the constant $C_n$ is the best possible.
Keywords:
consider sequence geq positive numbers defined ldots real valued martingale denote its square function establish bound mathbb leq mathbb m quad ldots each constant best possible
Affiliations des auteurs :
Adam Osękowski 1
@article{10_4064_ba61_2_11,
author = {Adam Os\k{e}kowski},
title = {Moment {Inequality} for the {Martingale} {Square} {Function}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {169--180},
year = {2013},
volume = {61},
number = {2},
doi = {10.4064/ba61-2-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-11/}
}
TY - JOUR AU - Adam Osękowski TI - Moment Inequality for the Martingale Square Function JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2013 SP - 169 EP - 180 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba61-2-11/ DO - 10.4064/ba61-2-11 LA - en ID - 10_4064_ba61_2_11 ER -
Adam Osękowski. Moment Inequality for the Martingale Square Function. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 2, pp. 169-180. doi: 10.4064/ba61-2-11
Cité par Sources :