On the Separation Dimension of $K_\omega$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 1, pp. 67-70.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that $\mathrm{trt}\, K_\omega>\omega+1$, where trt stands for the transfinite extension of Steinke's separation dimension. This answers a question of Chatyrko and Hattori.
DOI : 10.4064/ba61-1-7
Keywords: prove mathrm trt omega omega where trt stands transfinite extension steinkes separation dimension answers question chatyrko hattori

Yasunao Hattori 1 ; Jan van Mill 2

1 Department of Mathematics Shimane University Matsue, 690-8504 Japan
2 Faculty of Sciences Department of Mathematics VU University Amsterdam De Boelelaan 1081${}^{a}$ 1081 HV Amsterdam, The Netherlands
@article{10_4064_ba61_1_7,
     author = {Yasunao Hattori and Jan van Mill},
     title = {On the {Separation} {Dimension} of $K_\omega$},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {67--70},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2013},
     doi = {10.4064/ba61-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-1-7/}
}
TY  - JOUR
AU  - Yasunao Hattori
AU  - Jan van Mill
TI  - On the Separation Dimension of $K_\omega$
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2013
SP  - 67
EP  - 70
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba61-1-7/
DO  - 10.4064/ba61-1-7
LA  - en
ID  - 10_4064_ba61_1_7
ER  - 
%0 Journal Article
%A Yasunao Hattori
%A Jan van Mill
%T On the Separation Dimension of $K_\omega$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2013
%P 67-70
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba61-1-7/
%R 10.4064/ba61-1-7
%G en
%F 10_4064_ba61_1_7
Yasunao Hattori; Jan van Mill. On the Separation Dimension of $K_\omega$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 1, pp. 67-70. doi : 10.4064/ba61-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ba61-1-7/

Cité par Sources :