Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 1, pp. 35-45
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider an inhomogeneous measure $\mu $ with the inhomogeneous part a self-similar measure $\nu $, and show that for a given $r\in (0,\infty )$ the lower and the upper quantization dimensions of order $r$ of $\mu $ are bounded below by the quantization dimension $D_r(\nu )$ of $\nu $ and bounded above by a unique number $\kappa _r\in (0, \infty )$, related to the temperature function of the thermodynamic formalism that arises in the multifractal analysis of $\mu $.
Keywords:
consider inhomogeneous measure inhomogeneous part self similar measure given infty lower upper quantization dimensions order bounded below quantization dimension bounded above unique number kappa infty related temperature function thermodynamic formalism arises multifractal analysis
Affiliations des auteurs :
Mrinal Kanti Roychowdhury 1
@article{10_4064_ba61_1_5,
author = {Mrinal Kanti Roychowdhury},
title = {Quantization {Dimension} {Estimate} of {Inhomogeneous} {Self-Similar} {Measures}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {35--45},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {2013},
doi = {10.4064/ba61-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba61-1-5/}
}
TY - JOUR AU - Mrinal Kanti Roychowdhury TI - Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2013 SP - 35 EP - 45 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba61-1-5/ DO - 10.4064/ba61-1-5 LA - en ID - 10_4064_ba61_1_5 ER -
%0 Journal Article %A Mrinal Kanti Roychowdhury %T Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2013 %P 35-45 %V 61 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba61-1-5/ %R 10.4064/ba61-1-5 %G en %F 10_4064_ba61_1_5
Mrinal Kanti Roychowdhury. Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) no. 1, pp. 35-45. doi: 10.4064/ba61-1-5
Cité par Sources :