A Remark on a Paper of Crachiola and Makar-Limanov
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 3, pp. 203-206
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following:
if $X$ is an affine curve which is not isomorphic to the affine line $\mathbb A^1_k$, then
$\mathop{\rm ML}(X\times Y)=k[X]\otimes \mathop{\rm ML}(Y)$ for every affine variety $Y$, where $k$ is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety $X$ whose set of regular points is not $k$-uniruled.
Keywords:
crachiola makar limanov algebra showed following affine curve which isomorphic affine line mathbb mathop times otimes mathop every affine variety where algebraically closed field note simple geometric proof general property holds every affine variety whose set regular points k uniruled
Affiliations des auteurs :
Robert Dryło 1
@article{10_4064_ba59_3_2,
author = {Robert Dry{\l}o},
title = {A {Remark} on a {Paper} of {Crachiola} and {Makar-Limanov}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {203--206},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2011},
doi = {10.4064/ba59-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba59-3-2/}
}
TY - JOUR AU - Robert Dryło TI - A Remark on a Paper of Crachiola and Makar-Limanov JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2011 SP - 203 EP - 206 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba59-3-2/ DO - 10.4064/ba59-3-2 LA - en ID - 10_4064_ba59_3_2 ER -
Robert Dryło. A Remark on a Paper of Crachiola and Makar-Limanov. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 3, pp. 203-206. doi: 10.4064/ba59-3-2
Cité par Sources :