Remarks on the Bourgain–Brezis–Mironescu Approach to Sobolev Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 65-75
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a function $f\in L_{\rm loc}^p(\mathbb R^n)$ the notion of $p$-mean variation of order 1,
$\mathsf{V}^{p}_{1} (f,\mathbb R^n)$ is defined.
It generalizes the concept of F. Riesz variation of functions on the
real line $\mathbb R^1$ to $\mathbb R^n$, $n>1$. The characterisation of the Sobolev space
$W^{1,p}(\mathbb R^n)$ in terms of $\mathsf{V}^{p}_{1}(f,\mathbb R^n)$ is directly related to the
characterisation of $W^{1,p}(\mathbb R^n)$ by Lipschitz type pointwise inequalities of
Bojarski, Hajłasz and Strzelecki and to the Bourgain–Brezis–Mironescu approach.
Keywords:
function loc mathbb notion p mean variation order nbsp mathsf mathbb defined generalizes concept nbsp riesz variation functions real line mathbb mathbb characterisation sobolev space mathbb terms mathsf mathbb directly related characterisation mathbb lipschitz type pointwise inequalities bojarski haj asz strzelecki bourgain brezis mironescu approach
Affiliations des auteurs :
B. Bojarski  1
@article{10_4064_ba59_1_8,
author = {B. Bojarski},
title = {Remarks on the {Bourgain{\textendash}Brezis{\textendash}Mironescu} {Approach} to {Sobolev} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {65--75},
year = {2011},
volume = {59},
number = {1},
doi = {10.4064/ba59-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-8/}
}
TY - JOUR AU - B. Bojarski TI - Remarks on the Bourgain–Brezis–Mironescu Approach to Sobolev Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2011 SP - 65 EP - 75 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-8/ DO - 10.4064/ba59-1-8 LA - en ID - 10_4064_ba59_1_8 ER -
B. Bojarski. Remarks on the Bourgain–Brezis–Mironescu Approach to Sobolev Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 65-75. doi: 10.4064/ba59-1-8
Cité par Sources :