Remarks on the Bourgain–Brezis–Mironescu Approach to Sobolev Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 65-75.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a function $f\in L_{\rm loc}^p(\mathbb R^n)$ the notion of $p$-mean variation of order 1, $\mathsf{V}^{p}_{1} (f,\mathbb R^n)$ is defined. It generalizes the concept of F. Riesz variation of functions on the real line $\mathbb R^1$ to $\mathbb R^n$, $n>1$. The characterisation of the Sobolev space $W^{1,p}(\mathbb R^n)$ in terms of $\mathsf{V}^{p}_{1}(f,\mathbb R^n)$ is directly related to the characterisation of $W^{1,p}(\mathbb R^n)$ by Lipschitz type pointwise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain–Brezis–Mironescu approach.
DOI : 10.4064/ba59-1-8
Keywords: function loc mathbb notion p mean variation order nbsp mathsf mathbb defined generalizes concept nbsp riesz variation functions real line mathbb mathbb characterisation sobolev space mathbb terms mathsf mathbb directly related characterisation mathbb lipschitz type pointwise inequalities bojarski haj asz strzelecki bourgain brezis mironescu approach

B. Bojarski 1

1 Institute of Mathematics Polish Academy of Sciences 00-956 Warszawa, Poland
@article{10_4064_ba59_1_8,
     author = {B. Bojarski},
     title = {Remarks on the {Bourgain{\textendash}Brezis{\textendash}Mironescu} {Approach} to {Sobolev} {Spaces}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2011},
     doi = {10.4064/ba59-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-8/}
}
TY  - JOUR
AU  - B. Bojarski
TI  - Remarks on the Bourgain–Brezis–Mironescu Approach to Sobolev Spaces
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2011
SP  - 65
EP  - 75
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-8/
DO  - 10.4064/ba59-1-8
LA  - en
ID  - 10_4064_ba59_1_8
ER  - 
%0 Journal Article
%A B. Bojarski
%T Remarks on the Bourgain–Brezis–Mironescu Approach to Sobolev Spaces
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2011
%P 65-75
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-8/
%R 10.4064/ba59-1-8
%G en
%F 10_4064_ba59_1_8
B. Bojarski. Remarks on the Bourgain–Brezis–Mironescu Approach to Sobolev Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 65-75. doi : 10.4064/ba59-1-8. http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-8/

Cité par Sources :