A Characterization of One-Element $p$-Bases of Rings of Constants
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 19-26.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be a unique factorization domain of characteristic $p>0$, and let $f\in K[x_1,\dots,x_n]$ be a polynomial not lying in $K[x_1^p,\dots,x_n^p]$. We prove that $K[x_1^p,\dots,x_n^p, f]$ is the ring of constants of a $K$-derivation of $K[x_1,\dots,x_n]$ if and only if all the partial derivatives of $f$ are relatively prime. The proof is based on a generalization of Freudenburg's lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.
DOI : 10.4064/ba59-1-3
Keywords: unique factorization domain characteristic dots polynomial lying dots prove dots ring constants k derivation dots only partial derivatives relatively prime proof based generalization freudenburgs lemma polynomials unique factorization domain arbitrary characteristic

Piotr Jędrzejewicz 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University 87-100 Toruń, Poland
@article{10_4064_ba59_1_3,
     author = {Piotr J\k{e}drzejewicz},
     title = {A {Characterization} of {One-Element} $p${-Bases
} of {Rings} of {Constants}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2011},
     doi = {10.4064/ba59-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-3/}
}
TY  - JOUR
AU  - Piotr Jędrzejewicz
TI  - A Characterization of One-Element $p$-Bases
 of Rings of Constants
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2011
SP  - 19
EP  - 26
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-3/
DO  - 10.4064/ba59-1-3
LA  - en
ID  - 10_4064_ba59_1_3
ER  - 
%0 Journal Article
%A Piotr Jędrzejewicz
%T A Characterization of One-Element $p$-Bases
 of Rings of Constants
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2011
%P 19-26
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-3/
%R 10.4064/ba59-1-3
%G en
%F 10_4064_ba59_1_3
Piotr Jędrzejewicz. A Characterization of One-Element $p$-Bases
 of Rings of Constants. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 19-26. doi : 10.4064/ba59-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-3/

Cité par Sources :