The Diophantine Equation $X^3=u+v$ over Real Quadratic Fields
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k$ be a real quadratic field and let $\mathcal O_k$ and $\mathcal O_k^\times$ be the ring of integers and the group of units, respectively. A method of solving the Diophantine equation $X^3=u+v$ ($X\in\mathcal O_k$, $u,v\in\mathcal O_k^{\times}$) is developed.
DOI : 10.4064/ba59-1-1
Keywords: real quadratic field mathcal mathcal times ring integers group units respectively method solving diophantine equation mathcal mathcal times developed

Takaaki Kagawa 1

1 Department of Mathematical Sciences Ritsumeikan University Kusatsu, Shiga 525-8577, Japan
@article{10_4064_ba59_1_1,
     author = {Takaaki Kagawa},
     title = {The {Diophantine} {Equation} $X^3=u+v$ {over
Real} {Quadratic} {Fields}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2011},
     doi = {10.4064/ba59-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-1/}
}
TY  - JOUR
AU  - Takaaki Kagawa
TI  - The Diophantine Equation $X^3=u+v$ over
Real Quadratic Fields
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2011
SP  - 1
EP  - 9
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-1/
DO  - 10.4064/ba59-1-1
LA  - en
ID  - 10_4064_ba59_1_1
ER  - 
%0 Journal Article
%A Takaaki Kagawa
%T The Diophantine Equation $X^3=u+v$ over
Real Quadratic Fields
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2011
%P 1-9
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-1/
%R 10.4064/ba59-1-1
%G en
%F 10_4064_ba59_1_1
Takaaki Kagawa. The Diophantine Equation $X^3=u+v$ over
Real Quadratic Fields. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) no. 1, pp. 1-9. doi : 10.4064/ba59-1-1. http://geodesic.mathdoc.fr/articles/10.4064/ba59-1-1/

Cité par Sources :