Weitzenböck Formula for $SL(q)$-foliations
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 179-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A Weitzenböck formula for $SL(q)$-foliations is derived. Its linear part is a relative trace of the relative curvature operator acting on vector valued forms.
Mots-clés :
weitzenb formula foliations derived its linear part relative trace relative curvature operator acting vector valued forms
Affiliations des auteurs :
Adam Bartoszek 1 ; Jerzy Kalina 2 ; Antoni Pierzchalski 1
@article{10_4064_ba58_2_8,
author = {Adam Bartoszek and Jerzy Kalina and Antoni Pierzchalski},
title = {Weitzenb\"ock {Formula} for $SL(q)$-foliations},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {179--188},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2010},
doi = {10.4064/ba58-2-8},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-8/}
}
TY - JOUR AU - Adam Bartoszek AU - Jerzy Kalina AU - Antoni Pierzchalski TI - Weitzenböck Formula for $SL(q)$-foliations JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2010 SP - 179 EP - 188 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-8/ DO - 10.4064/ba58-2-8 LA - de ID - 10_4064_ba58_2_8 ER -
%0 Journal Article %A Adam Bartoszek %A Jerzy Kalina %A Antoni Pierzchalski %T Weitzenböck Formula for $SL(q)$-foliations %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2010 %P 179-188 %V 58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-8/ %R 10.4064/ba58-2-8 %G de %F 10_4064_ba58_2_8
Adam Bartoszek; Jerzy Kalina; Antoni Pierzchalski. Weitzenböck Formula for $SL(q)$-foliations. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 179-188. doi: 10.4064/ba58-2-8
Cité par Sources :