Weighted Estimates for the Maximal Operator of a
Multilinear Singular Integral
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 129-135
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An improved multiple Cotlar inequality is obtained. From this result, weighted} norm inequalities for the maximal operator of a multilinear singular integral including weak and strong estimates are deduced under the multiple weights constructed recently.
Keywords:
improved multiple cotlar inequality obtained result weighted norm inequalities maximal operator multilinear singular integral including weak strong estimates deduced under multiple weights constructed recently
Affiliations des auteurs :
Xi Chen 1
@article{10_4064_ba58_2_4,
author = {Xi Chen},
title = {Weighted {Estimates} for the {Maximal} {Operator} of a
{Multilinear} {Singular} {Integral}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {129--135},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2010},
doi = {10.4064/ba58-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-4/}
}
TY - JOUR AU - Xi Chen TI - Weighted Estimates for the Maximal Operator of a Multilinear Singular Integral JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2010 SP - 129 EP - 135 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-4/ DO - 10.4064/ba58-2-4 LA - en ID - 10_4064_ba58_2_4 ER -
%0 Journal Article %A Xi Chen %T Weighted Estimates for the Maximal Operator of a Multilinear Singular Integral %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2010 %P 129-135 %V 58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-4/ %R 10.4064/ba58-2-4 %G en %F 10_4064_ba58_2_4
Xi Chen. Weighted Estimates for the Maximal Operator of a Multilinear Singular Integral. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 129-135. doi: 10.4064/ba58-2-4
Cité par Sources :