Büchi Sequences in Local Fields and Local Rings
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 109-115.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that there exist infinite Büchi i sequences in some local rings and local fields, with the exception of the ring ${\mathbb Z}_p$ of $p$-adic integers. In ${\mathbb Z}_p$ there are only finite but arbitrarily long Büchi sequences.
DOI : 10.4064/ba58-2-2
Keywords: prove there exist infinite chi sequences local rings local fields exception ring mathbb p adic integers mathbb there only finite arbitrarily long chi sequences

Jerzy Browkin 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland
@article{10_4064_ba58_2_2,
     author = {Jerzy Browkin},
     title = {B\"uchi {Sequences} in {Local} {Fields} and {Local} {Rings}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {109--115},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2010},
     doi = {10.4064/ba58-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-2/}
}
TY  - JOUR
AU  - Jerzy Browkin
TI  - Büchi Sequences in Local Fields and Local Rings
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2010
SP  - 109
EP  - 115
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-2/
DO  - 10.4064/ba58-2-2
LA  - en
ID  - 10_4064_ba58_2_2
ER  - 
%0 Journal Article
%A Jerzy Browkin
%T Büchi Sequences in Local Fields and Local Rings
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2010
%P 109-115
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-2/
%R 10.4064/ba58-2-2
%G en
%F 10_4064_ba58_2_2
Jerzy Browkin. Büchi Sequences in Local Fields and Local Rings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 109-115. doi : 10.4064/ba58-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-2/

Cité par Sources :