Optimal Holomorphic Hypercontractivity for CAR Algebras
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 79-90
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present a new proof of Janson's strong hypercontractivity inequality for the Ornstein–Uhlenbeck semigroup in holomorphic algebras associated with CAR (canonical anticommutation relations) algebras. In the one generator case we calculate optimal bounds for $t$ such that $U_t$ is a contraction as a map $L_2({\cal H})\to L_p({\cal H})$ for arbitrary $p\geq 2$. We also prove a logarithmic Sobolev inequality.
Keywords:
present proof jansons strong hypercontractivity inequality ornstein uhlenbeck semigroup holomorphic algebras associated car canonical anticommutation relations algebras generator calculate optimal bounds contraction map cal cal arbitrary geq prove logarithmic sobolev inequality
Affiliations des auteurs :
Ilona Królak 1
@article{10_4064_ba58_1_9,
author = {Ilona Kr\'olak},
title = {Optimal {Holomorphic} {Hypercontractivity} for {CAR} {Algebras}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {79--90},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2010},
doi = {10.4064/ba58-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-9/}
}
TY - JOUR AU - Ilona Królak TI - Optimal Holomorphic Hypercontractivity for CAR Algebras JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2010 SP - 79 EP - 90 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-9/ DO - 10.4064/ba58-1-9 LA - en ID - 10_4064_ba58_1_9 ER -
Ilona Królak. Optimal Holomorphic Hypercontractivity for CAR Algebras. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 79-90. doi: 10.4064/ba58-1-9
Cité par Sources :