Sharp Ratio Inequalities for a Conditionally Symmetric Martingale
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 65-77.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ be a conditionally symmetric martingale and let $S(f)$ denote its square function.(i) For $p,\,q>0$, we determine the best constants $C_{p,q}$ such that $$ \sup_n\,{\mathbb E} \frac{|f_n|^p}{(1+S_n^2(f))^q}\leq C_{p,q}. $$ Furthermore, the inequality extends to the case of Hilbert space valued $f$.(ii) For $N=1,2,\ldots$ and $q>0$, we determine the best constants $C'_{N,q}$ such that $$ \sup_n\,{\mathbb E} \frac{f_n^{2N-1}}{(1+S_n^2(f))^q}\leq C'_{N,q}. $$These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if the conditional symmetry is not assumed.
DOI : 10.4064/ba58-1-8
Keywords: conditionally symmetric martingale denote its square function determine best constants sup mathbb frac leq furthermore inequality extends hilbert space valued ldots determine best constants sup mathbb frac n leq these bounds extended sums conditionally symmetric variables which necessarily integrable addition neither inequalities above holds conditional symmetry assumed

Adam Os/ekowski 1

1 Department of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_ba58_1_8,
     author = {Adam Os/ekowski},
     title = {Sharp {Ratio} {Inequalities} for a {Conditionally} {Symmetric} {Martingale}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2010},
     doi = {10.4064/ba58-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-8/}
}
TY  - JOUR
AU  - Adam Os/ekowski
TI  - Sharp Ratio Inequalities for a Conditionally Symmetric Martingale
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2010
SP  - 65
EP  - 77
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-8/
DO  - 10.4064/ba58-1-8
LA  - en
ID  - 10_4064_ba58_1_8
ER  - 
%0 Journal Article
%A Adam Os/ekowski
%T Sharp Ratio Inequalities for a Conditionally Symmetric Martingale
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2010
%P 65-77
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-8/
%R 10.4064/ba58-1-8
%G en
%F 10_4064_ba58_1_8
Adam Os/ekowski. Sharp Ratio Inequalities for a Conditionally Symmetric Martingale. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 65-77. doi : 10.4064/ba58-1-8. http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-8/

Cité par Sources :