Functions Equivalent to Borel Measurable Ones
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 55-64
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X$ and $Y$ be two Polish spaces.
Functions $f,g:X\to Y$
are called equivalent if there exists a bijection $\varphi$
from $X$ onto itself such that $g\circ\varphi=f$.
Using a theorem of J. Saint Raymond we characterize
functions equivalent to Borel measurable ones. This characterization
answers a question asked by M. Morayne
and C. Ryll-Nardzewski.
Keywords:
polish spaces functions called equivalent there exists nbsp bijection varphi nbsp itself circ varphi using theorem nbsp saint raymond characterize functions equivalent borel measurable characterization answers question asked nbsp morayne nbsp ryll nardzewski
Affiliations des auteurs :
Andrzej Komisarski 1 ; Henryk Michalewski 2 ; Paweł Milewski 3
@article{10_4064_ba58_1_7,
author = {Andrzej Komisarski and Henryk Michalewski and Pawe{\l} Milewski},
title = {Functions {Equivalent} to {Borel} {Measurable} {Ones}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {55--64},
year = {2010},
volume = {58},
number = {1},
doi = {10.4064/ba58-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-7/}
}
TY - JOUR AU - Andrzej Komisarski AU - Henryk Michalewski AU - Paweł Milewski TI - Functions Equivalent to Borel Measurable Ones JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2010 SP - 55 EP - 64 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-7/ DO - 10.4064/ba58-1-7 LA - en ID - 10_4064_ba58_1_7 ER -
%0 Journal Article %A Andrzej Komisarski %A Henryk Michalewski %A Paweł Milewski %T Functions Equivalent to Borel Measurable Ones %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2010 %P 55-64 %V 58 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-7/ %R 10.4064/ba58-1-7 %G en %F 10_4064_ba58_1_7
Andrzej Komisarski; Henryk Michalewski; Paweł Milewski. Functions Equivalent to Borel Measurable Ones. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 55-64. doi: 10.4064/ba58-1-7
Cité par Sources :