The Dual of a Non-reflexive L-embedded Banach Space
Contains $l^{\infty }$ Isometrically
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 31-38
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains $l^{\infty }$ isometrically.
Keywords:
banach space said l embedded complemented its bidual norm between complementary subspaces additive prove dual non reflexive l embedded banach space contains infty isometrically
Affiliations des auteurs :
Hermann Pfitzner 1
@article{10_4064_ba58_1_4,
author = {Hermann Pfitzner},
title = {The {Dual} of a {Non-reflexive} {L-embedded} {Banach} {Space
} {Contains} $l^{\infty }$ {Isometrically}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {31--38},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2010},
doi = {10.4064/ba58-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-4/}
}
TY - JOUR
AU - Hermann Pfitzner
TI - The Dual of a Non-reflexive L-embedded Banach Space
Contains $l^{\infty }$ Isometrically
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2010
SP - 31
EP - 38
VL - 58
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-4/
DO - 10.4064/ba58-1-4
LA - en
ID - 10_4064_ba58_1_4
ER -
%0 Journal Article
%A Hermann Pfitzner
%T The Dual of a Non-reflexive L-embedded Banach Space
Contains $l^{\infty }$ Isometrically
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2010
%P 31-38
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-4/
%R 10.4064/ba58-1-4
%G en
%F 10_4064_ba58_1_4
Hermann Pfitzner. The Dual of a Non-reflexive L-embedded Banach Space
Contains $l^{\infty }$ Isometrically. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 31-38. doi: 10.4064/ba58-1-4
Cité par Sources :