The Dual of a Non-reflexive L-embedded Banach Space Contains $l^{\infty }$ Isometrically
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 31-38.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains $l^{\infty }$ isometrically.
DOI : 10.4064/ba58-1-4
Keywords: banach space said l embedded complemented its bidual norm between complementary subspaces additive prove dual non reflexive l embedded banach space contains infty isometrically

Hermann Pfitzner 1

1 Université d'Orléans BP 6759 F-45067 Orléans Cedex 2, France
@article{10_4064_ba58_1_4,
     author = {Hermann Pfitzner},
     title = {The {Dual} of a {Non-reflexive} {L-embedded} {Banach} {Space
} {Contains} $l^{\infty }$ {Isometrically}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2010},
     doi = {10.4064/ba58-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-4/}
}
TY  - JOUR
AU  - Hermann Pfitzner
TI  - The Dual of a Non-reflexive L-embedded Banach Space
 Contains $l^{\infty }$ Isometrically
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2010
SP  - 31
EP  - 38
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-4/
DO  - 10.4064/ba58-1-4
LA  - en
ID  - 10_4064_ba58_1_4
ER  - 
%0 Journal Article
%A Hermann Pfitzner
%T The Dual of a Non-reflexive L-embedded Banach Space
 Contains $l^{\infty }$ Isometrically
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2010
%P 31-38
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-4/
%R 10.4064/ba58-1-4
%G en
%F 10_4064_ba58_1_4
Hermann Pfitzner. The Dual of a Non-reflexive L-embedded Banach Space
 Contains $l^{\infty }$ Isometrically. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 31-38. doi : 10.4064/ba58-1-4. http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-4/

Cité par Sources :