A Discretized Approach to W. T. Gowers' Game
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give an alternative proof of W. T. Gowers' theorem on block bases by reducing it to a discrete analogue on specific countable nets. We also give a Ramsey type result on $k$-tuples of block sequences in a normed linear space with a Schauder basis.
DOI : 10.4064/ba58-1-1
Keywords: alternative proof gowers theorem block bases reducing discrete analogue specific countable nets ramsey type result k tuples block sequences normed linear space schauder basis

V. Kanellopoulos 1 ; K. Tyros 1

1 Department of Mathematics Faculty of Applied Sciences National Technical University of Athens Zografou Campus 157 80, Athens, Greece
@article{10_4064_ba58_1_1,
     author = {V. Kanellopoulos and K. Tyros},
     title = {A {Discretized} {Approach} to {W.} {T.} {Gowers'} {Game}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2010},
     doi = {10.4064/ba58-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-1/}
}
TY  - JOUR
AU  - V. Kanellopoulos
AU  - K. Tyros
TI  - A Discretized Approach to W. T. Gowers' Game
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2010
SP  - 1
EP  - 16
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-1/
DO  - 10.4064/ba58-1-1
LA  - en
ID  - 10_4064_ba58_1_1
ER  - 
%0 Journal Article
%A V. Kanellopoulos
%A K. Tyros
%T A Discretized Approach to W. T. Gowers' Game
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2010
%P 1-16
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-1/
%R 10.4064/ba58-1-1
%G en
%F 10_4064_ba58_1_1
V. Kanellopoulos; K. Tyros. A Discretized Approach to W. T. Gowers' Game. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 1-16. doi : 10.4064/ba58-1-1. http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-1/

Cité par Sources :