Property C for ODE and Applications to an Inverse Problem for a Heat Equation
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 243-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\ell_j:=-{d^2}/{dx^2}+k^2q_j(x),$ $k={\rm const}>0$, $j=1,2,$ $0 \mathop{\rm ess\,inf} q_j(x)\leq \mathop{\rm ess\,sup} q_j(x)\infty.$ Suppose that $(*)\kern.5em \int_0^1p(x)u_1(x,k)u_2(x,k)\,dx=0$ for all $k>0,$ where $p$ is an arbitrary fixed bounded piecewise-analytic function on $[0,1]$, which changes sign finitely many times, and $u_j$ solves the problem $\ell_ju_j=0,\ 0\leq x\leq 1,\ u'_j(0,k)=0,\ u_j(0,k)=1.$ It is proved that $(*)$ implies $p=0$. This result is applied to an inverse problem for a heat equation.
DOI : 10.4064/ba57-3-6
Keywords: ell const mathop ess inf leq mathop ess sup infty suppose * kern int where arbitrary fixed bounded piecewise analytic function which changes sign finitely many times solves problem ell leq leq proved * implies result applied inverse problem heat equation

A. G. Ramm 1

1 Department of Mathematics Kansas State University Manhattan, KS 66506-2602, U.S.A.
@article{10_4064_ba57_3_6,
     author = {A. G. Ramm},
     title = {Property {C} for {ODE} and {Applications} to an {Inverse} {
Problem} for a {Heat} {Equation}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {243--249},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2009},
     doi = {10.4064/ba57-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-6/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Property C for ODE and Applications to an Inverse 
Problem for a Heat Equation
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2009
SP  - 243
EP  - 249
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-6/
DO  - 10.4064/ba57-3-6
LA  - en
ID  - 10_4064_ba57_3_6
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Property C for ODE and Applications to an Inverse 
Problem for a Heat Equation
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2009
%P 243-249
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-6/
%R 10.4064/ba57-3-6
%G en
%F 10_4064_ba57_3_6
A. G. Ramm. Property C for ODE and Applications to an Inverse 
Problem for a Heat Equation. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 243-249. doi : 10.4064/ba57-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-6/

Cité par Sources :