Property C for ODE and Applications to an Inverse
Problem for a Heat Equation
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 243-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\ell_j:=-{d^2}/{dx^2}+k^2q_j(x),$
$k={\rm const}>0$, $j=1,2,$ $0 \mathop{\rm ess\,inf} q_j(x)\leq \mathop{\rm ess\,sup} q_j(x)\infty.$
Suppose that $(*)\kern.5em \int_0^1p(x)u_1(x,k)u_2(x,k)\,dx=0$ for all
$k>0,$ where $p$ is an arbitrary fixed
bounded piecewise-analytic
function on $[0,1]$, which changes sign finitely many times,
and
$u_j$ solves the problem
$\ell_ju_j=0,\
0\leq x\leq 1,\ u'_j(0,k)=0,\ u_j(0,k)=1.$
It is proved that $(*)$ implies $p=0$.
This result is applied to an inverse problem for a heat equation.
Keywords:
ell const mathop ess inf leq mathop ess sup infty suppose * kern int where arbitrary fixed bounded piecewise analytic function which changes sign finitely many times solves problem ell leq leq proved * implies result applied inverse problem heat equation
Affiliations des auteurs :
A. G. Ramm 1
@article{10_4064_ba57_3_6,
author = {A. G. Ramm},
title = {Property {C} for {ODE} and {Applications} to an {Inverse} {
Problem} for a {Heat} {Equation}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {243--249},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2009},
doi = {10.4064/ba57-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-6/}
}
TY - JOUR AU - A. G. Ramm TI - Property C for ODE and Applications to an Inverse Problem for a Heat Equation JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2009 SP - 243 EP - 249 VL - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-6/ DO - 10.4064/ba57-3-6 LA - en ID - 10_4064_ba57_3_6 ER -
%0 Journal Article %A A. G. Ramm %T Property C for ODE and Applications to an Inverse Problem for a Heat Equation %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2009 %P 243-249 %V 57 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-6/ %R 10.4064/ba57-3-6 %G en %F 10_4064_ba57_3_6
A. G. Ramm. Property C for ODE and Applications to an Inverse Problem for a Heat Equation. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 243-249. doi: 10.4064/ba57-3-6
Cité par Sources :