On Polynomially Bounded Harmonic Functions on the ${\bf Z}^d$ Lattice
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 231-242
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if $f:{\bf Z}^d \to {\bf R}$ is harmonic and there exists a polynomial $W:{\bf Z}^d \to {\bf R}$ such that $f+W$ is nonnegative, then $f$ is a polynomial.
Keywords:
prove harmonic there exists polynomial nonnegative polynomial
Affiliations des auteurs :
Piotr Nayar  1
@article{10_4064_ba57_3_5,
author = {Piotr Nayar},
title = {On {Polynomially} {Bounded} {Harmonic} {Functions} on the ${\bf Z}^d$ {Lattice}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {231--242},
year = {2009},
volume = {57},
number = {3},
doi = {10.4064/ba57-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-5/}
}
TY - JOUR
AU - Piotr Nayar
TI - On Polynomially Bounded Harmonic Functions on the ${\bf Z}^d$ Lattice
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2009
SP - 231
EP - 242
VL - 57
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-5/
DO - 10.4064/ba57-3-5
LA - en
ID - 10_4064_ba57_3_5
ER -
Piotr Nayar. On Polynomially Bounded Harmonic Functions on the ${\bf Z}^d$ Lattice. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 231-242. doi: 10.4064/ba57-3-5
Cité par Sources :