On Polynomially Bounded Harmonic Functions on the ${\bf Z}^d$ Lattice
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 231-242.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $f:{\bf Z}^d \to {\bf R}$ is harmonic and there exists a polynomial $W:{\bf Z}^d \to {\bf R}$ such that $f+W$ is nonnegative, then $f$ is a polynomial.
DOI : 10.4064/ba57-3-5
Keywords: prove harmonic there exists polynomial nonnegative polynomial

Piotr Nayar 1

1 Institute of Mathematics University of Warsaw 02-097 Warszawa, Poland
@article{10_4064_ba57_3_5,
     author = {Piotr Nayar},
     title = {On {Polynomially} {Bounded} {Harmonic} {Functions}  on the ${\bf Z}^d$ {Lattice}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {231--242},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2009},
     doi = {10.4064/ba57-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-5/}
}
TY  - JOUR
AU  - Piotr Nayar
TI  - On Polynomially Bounded Harmonic Functions  on the ${\bf Z}^d$ Lattice
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2009
SP  - 231
EP  - 242
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-5/
DO  - 10.4064/ba57-3-5
LA  - en
ID  - 10_4064_ba57_3_5
ER  - 
%0 Journal Article
%A Piotr Nayar
%T On Polynomially Bounded Harmonic Functions  on the ${\bf Z}^d$ Lattice
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2009
%P 231-242
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-5/
%R 10.4064/ba57-3-5
%G en
%F 10_4064_ba57_3_5
Piotr Nayar. On Polynomially Bounded Harmonic Functions  on the ${\bf Z}^d$ Lattice. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 231-242. doi : 10.4064/ba57-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-5/

Cité par Sources :