Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 189-197.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide upper and lower bounds in consistency strength for the theories “ZF + $\neg $AC$_\omega $ + All successor cardinals except successors of uncountable limit cardinals are regular $+$ Every uncountable limit cardinal is singular $+$ The successor of every uncountable limit cardinal is singular of cofinality $\omega $” and “ZF + $\neg$AC$_\omega $ + All successor cardinals except successors of uncountable limit cardinals are regular $+$ Every uncountable limit cardinal is singular $+$ The successor of every uncountable limit cardinal is singular of cofinality $\omega _1$”. In particular, our models for both of these theories satisfy “ZF + $\neg$AC$_\omega $ + $\kappa $ is singular if{f} $\kappa $ is either an uncountable limit cardinal or the successor of an uncountable limit cardinal”.
DOI : 10.4064/ba57-3-1
Keywords: provide upper lower bounds consistency strength theories neg omega successor cardinals except successors uncountable limit cardinals regular every uncountable limit cardinal singular successor every uncountable limit cardinal singular cofinality omega negac omega successor cardinals except successors uncountable limit cardinals regular every uncountable limit cardinal singular successor every uncountable limit cardinal singular cofinality omega particular models these theories satisfy negac omega kappa singular kappa either uncountable limit cardinal successor uncountable limit cardinal

Arthur W. Apter 1

1 Department of Mathematics Baruch College of CUNY New York, NY 10010, U.S.A. and The CUNY Graduate Center, Mathematics 365 Fifth Avenue New York, NY 10016, U.S.A.
@article{10_4064_ba57_3_1,
     author = {Arthur W. Apter},
     title = {Sandwiching the {Consistency} {Strength} of
 {Two} {Global} {Choiceless} {Cardinal} {Patterns}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {189--197},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2009},
     doi = {10.4064/ba57-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-1/}
}
TY  - JOUR
AU  - Arthur W. Apter
TI  - Sandwiching the Consistency Strength of
 Two Global Choiceless Cardinal Patterns
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2009
SP  - 189
EP  - 197
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-1/
DO  - 10.4064/ba57-3-1
LA  - en
ID  - 10_4064_ba57_3_1
ER  - 
%0 Journal Article
%A Arthur W. Apter
%T Sandwiching the Consistency Strength of
 Two Global Choiceless Cardinal Patterns
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2009
%P 189-197
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-1/
%R 10.4064/ba57-3-1
%G en
%F 10_4064_ba57_3_1
Arthur W. Apter. Sandwiching the Consistency Strength of
 Two Global Choiceless Cardinal Patterns. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 189-197. doi : 10.4064/ba57-3-1. http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-1/

Cité par Sources :