Sandwiching the Consistency Strength of
Two Global Choiceless Cardinal Patterns
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 189-197
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide upper and lower bounds in consistency
strength for the theories
“ZF + $\neg $AC$_\omega $ +
All successor cardinals except successors of
uncountable limit cardinals are regular $+$ Every
uncountable limit cardinal is singular $+$
The successor of every uncountable
limit cardinal is singular of cofinality $\omega $” and
“ZF + $\neg$AC$_\omega $ +
All successor cardinals except successors of
uncountable limit cardinals are regular $+$ Every
uncountable limit cardinal is singular $+$
The successor of every uncountable
limit cardinal is singular of cofinality $\omega _1$”.
In particular, our models for both of these
theories satisfy “ZF + $\neg$AC$_\omega $ +
$\kappa $ is singular if{f} $\kappa $ is either an
uncountable limit cardinal or the successor of
an uncountable limit cardinal”.
Keywords:
provide upper lower bounds consistency strength theories neg omega successor cardinals except successors uncountable limit cardinals regular every uncountable limit cardinal singular successor every uncountable limit cardinal singular cofinality omega negac omega successor cardinals except successors uncountable limit cardinals regular every uncountable limit cardinal singular successor every uncountable limit cardinal singular cofinality omega particular models these theories satisfy negac omega kappa singular kappa either uncountable limit cardinal successor uncountable limit cardinal
Affiliations des auteurs :
Arthur W. Apter 1
@article{10_4064_ba57_3_1,
author = {Arthur W. Apter},
title = {Sandwiching the {Consistency} {Strength} of
{Two} {Global} {Choiceless} {Cardinal} {Patterns}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {189--197},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2009},
doi = {10.4064/ba57-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-1/}
}
TY - JOUR AU - Arthur W. Apter TI - Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2009 SP - 189 EP - 197 VL - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-1/ DO - 10.4064/ba57-3-1 LA - en ID - 10_4064_ba57_3_1 ER -
%0 Journal Article %A Arthur W. Apter %T Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2009 %P 189-197 %V 57 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba57-3-1/ %R 10.4064/ba57-3-1 %G en %F 10_4064_ba57_3_1
Arthur W. Apter. Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 3, pp. 189-197. doi: 10.4064/ba57-3-1
Cité par Sources :