Exponential Sums with Farey Fractions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 2, pp. 101-107.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For positive integers $m$ and $N$, we estimate the rational exponential sums with denominator $m$ over the reductions modulo $m$ of elements of the set $$ {\cal F}(N) = \{ s/r : r,s \in {\mathbb Z},\, \gcd(r,s) = 1, \, N\ge r > s \ge 1\} $$ of Farey fractions of order $N$ (only fractions $s/r$ with $\gcd(r,m)=1$ are considered).
DOI : 10.4064/ba57-2-2
Keywords: positive integers estimate rational exponential sums denominator reductions modulo elements set cal mathbb gcd farey fractions order only fractions gcd considered

Igor E. Shparlinski 1

1 Department of Computing Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_ba57_2_2,
     author = {Igor E. Shparlinski},
     title = {Exponential {Sums} with {Farey} {Fractions}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2009},
     doi = {10.4064/ba57-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-2/}
}
TY  - JOUR
AU  - Igor E. Shparlinski
TI  - Exponential Sums with Farey Fractions
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2009
SP  - 101
EP  - 107
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-2/
DO  - 10.4064/ba57-2-2
LA  - en
ID  - 10_4064_ba57_2_2
ER  - 
%0 Journal Article
%A Igor E. Shparlinski
%T Exponential Sums with Farey Fractions
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2009
%P 101-107
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-2/
%R 10.4064/ba57-2-2
%G en
%F 10_4064_ba57_2_2
Igor E. Shparlinski. Exponential Sums with Farey Fractions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 2, pp. 101-107. doi : 10.4064/ba57-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-2/

Cité par Sources :